

答辩人: 王玉杰

导师: 曹坤芳研究员

中国科学技术大学生命科学院中国科学院西双版纳热带植物园

2013年11月

1 背景

枝条导水率的研究 脆弱性曲线的研究 离心机法

2 负压与导水率

负压下导水率的测定 气穴化程度和负压敏感性的关系

3 模型的构建与预测

离心机内枝条的模型 模型的结果和预测

1 背景

枝条导水率的研究 脆弱性曲线的研究 离心机法

2 负压与导水率

负压下导水率的测定 气穴化程度和负压敏感性的关系

3 模型的构建与预测

离心机内枝条的模型 模型的结果和预测 L背景

L枝条导水率的研究

枝条导水率及其应用

枝条导水率定义

Hydraulic conductance, k_h : 流过枝条的液体的质量和流经该枝条的液体压力梯度的比值,即:

$$k_h = \frac{F}{\Delta P / \Delta x}$$

导水率的应用

- •边材比导率 (k_s) ,叶比导率 (k_l) ,衡量枝条供水能力;
- 脆弱性曲线,衡量枝条对环境的耐受能力。

(1)

L背景

L脆弱性曲线的研究

脆弱性曲线

定义

脆弱性曲线(Vulnerablity Curve)通过绘制木质部压强和导水率 损失百分比(PLC)实现,脆弱性 是指枝条承受环境胁迫的能力, 反映了枝条对气穴化的抵抗能 力。

意义

脆弱性曲线反映了枝条承受如干 旱、寒冷等环境胁迫的能力。木 质部对气穴化的抗性对于植物生 理和生态学有着重要的意义。

L离心机法

└背景 └离心机法

离心机内压力的分布

Distance to center (m)

middle Pressure in stem (MPa)

_背景

L离心机法

离心机法导水率的测定

离心机外测定

将枝条取出离心机进行导水率测定。

离心机内测定

直接在离心机内, 通过观察液面的变化来计算压力和导水率。

$$F^{*} = s(r_{1} - r_{2})/(t_{2} - t_{1})$$

$$\Delta P^{*} = 1/6\rho\omega^{2} \frac{3R^{2}(r_{1} - r_{2}) + (R - r_{1})^{3} - (R - r_{2})^{3}}{r_{1} - r_{2}}$$

$$k_{h} = \frac{F^{*}L}{\Delta P^{*}}$$
(2)
(3)
(4)

L负压与导水率

1 背景

枝条导水率的研究 脆弱性曲线的研究 离心机法

2 负压与导水率

负压下导水率的测定

气穴化程度和负压敏感性的关系

3 模型的构建与预测

离心机内枝条的模型 模型的结果和预测

L负压与导水率

L负压下导水率的测定

导水率测定装置

L负压与导水率

L负压下导水率的测定

Time (s)

Pressure (KPa)

Hydraulic conductance Raito (%)

导水率随时间的线性下降

Time (s)

L负压与导水率

L负压下导水率的测定

L负压与导水率

L负压下导水率的测定

负压下导水率的变化|

Pressure

Pressure

L负压与导水率

L负压下导水率的测定

负压下导水率的变化 ||

Pressure

- 根据理想气体方程: *PV* = *nRT*, 导管内气泡的体积随着压力降低而增大;
- 枝条内一些非导管途径,负压下临时性失去导水功能,常压下时恢复。

永久性导水率变化

 一些非导管途径在负压下失去导水功能,而回 到常压下不能再恢复。

L负压与导水率

L气穴化程度和负压敏感性的关系

PLC和Sk的关系 |

<□▶ </2> < 注▶ < 注▶ < 注▶ 注 のの(

L负压与导水率

└气穴化程度和负压敏感性的关系

PLC和Sk的关系 ||

L负压与导水率

L气穴化程度和负压敏感性的关系

PLC和Sk的关系 III

PLC traditional (%)

PLC与Sk的关系

- PLC越大, S_k 越大;
- PLC为0时*S_k*不为0.

PLC测定方法的差异

比较	截距	斜率	R^2
传统法-离心法	3.567	1.118	0.919
传统法-50KPa	7.306	1.797	0.942
离心法-50KPa	6.882	1.052	0.967

PLC cavitron (%)

L模型的构建与预测

1 背景

枝条导水率的研究 脆弱性曲线的研究 离心机法

2 负压与导水率

负压下导水率的测定 气穴化程度和负压敏感性的关系

3 模型的构建与预测

离心机内枝条的模型 模型的结果和预测

L模型的构建与预测

L离心机内枝条的模型

枝条的分段模型

最大导管长度L小于2R

- a, e: 如左图所示, 浸没在水中的两端的部分;
- b,d:如左图所示,c段两端
 的R-L/2的部分;
- c: 如左图所示, 枝条中央长L的部分。

最大导管长度L大于2R

- ob, od: 导管一端开口的部分;
- |,导管两端开口的部分。

L模型的构建与预测

L离心机内枝条的模型

导管的物理参数

导管长度影响气泡及压力的分布;

导管内径 影响气泡的生长及表面张力的大小。

导管内的气泡

气泡分布影响枝条不同位置的气泡的扩张;

气泡压力影响气泡的扩大的速度;

气泡大小影响气泡的扩大及表面张力的大小。

L模型的构建与预测

L离心机内枝条的模型

Cavitron-Final-ModeLpy (~/Programs/Python) - gedit - 🛛 🗙		jes	jesiner@arch:~/Programs/Python - 🗖		
File Edit View Search Tools Documents	File	Edit View Search Termina	ıl Help		
D Den v De Save 🖶 indo v V iD 🖻 Q Q	0.65	48.10606060606061	47.889352947456544		
	0.00	48.1000000000000	4/.8959258/9548115		
Cavitare Firel Medel av	0.07	48.10000000000000	47.090405525158045		
Cavitron-Final-Model.py	0.00	48.10606060606060	47.9027944497234		
import time	0.05	48.10606060606060	47.90703913140003		
	0.71	48,106060606060606	47.915459265577766		
# Central PLC, basal end parameter, distal end parameter, bubble pressure and	0.72	48.1060606060606061	47.91951926890446		
surarace tension	0.73	48.1060606060606061	47.923502136874504		
center_PLL = 50	0.74	48.10606060606061	47.92740995877888		
a_para = 0	0.75	48.10606060606061	47.93124475420842		
D_para - 0 BD - 50	0.76	48.10606060606061	47.934492208778344		
surface tension = 8.15	0.77	48.10606060606061	47.93742455134441		
	0.78	48.10606060606061	47.940303974894434		
# range of central tension	0.79	48.10606060606061	47.943131852964115		
KPa range = range $(0, 1001, 10)$	0.8	48.10606060606061	47.94590951454062		
center tension = []	0.81	48.10606060606061	47.94863824568521		
for i in KPa range:	0.82	48.10606060606061	47.9513192910989		
center tension.append(float(i) / 1000)	0.83	48.10606060606061	47.95395385563182		
	0.84	48.10606060606061	47.956543105737964		
# vessel length	0.85	48.10606060606061	47.959088170876086		
vessel_length = 0.25	0.86	48.10606060606061	47.96159014485863		
	0.87	48.10606060606061	47.96405008714977		
# find x with a l	0.88	48.10606060606061	47.966469024114375		
<pre>def find_x(l,ct,bs):</pre>	0.89	48.10606060606061	47.96884795021914		
x = 0	0.9	48.10606060606061	47.97118782918761		
<pre>if (bs ** 2 / 0.127 ** 2 -1) * 1000 * ct + 100 + surface_tension > BP:</pre>	0.91	48.10000000000000	47.97548959511085		
while 1:	0.92	48.10000000000000	4/.9/3/34133314030		
judge = ((abs(bs) - x) ** 2 / 0.127 ** 2 -1) * ct * 1000 +	0.95	40.10000000000000	47.97790230230304		
100 + surface_tension - l / (l - x) * BP	0.94	48.1060606060606061	47.900000040340334		
slope = - ct * 1000 / 0.127 ** 2 * 2 * (abs(bs) -x) - BP *	0.95	48.1060606060606061	47.901720942074755		
L / (L - X) ** 2	0 97	48.10606060606060	47 98495060132637		
x = x - judge / slope	0.98	48.10606060606061	47.98652850105114		
# print judge,slope,x	0.99	48.10606060606061	47.988082515523956		
<pre>lT (abs(judge) < 0.001):</pre>	1.0	48.10606060606061	47.989613175726504		
	[iesi	ner@arch Python]\$	11100010110120001		
Python V Tab Width: 8 V Ln 17, Col 21 INS	1,001	and car on i fenonjø			

L模型的构建与预测

L模型的结果和预测

模型的拟合|

Distance to center (m)

middle Pressure in stem (MPa)

L模型的构建与预测

L模型的结果和预测

模型的拟合 ||

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ◆ □ ◆ ⊙ へ ⊙

L模型的构建与预测

L模型的结果和预测

模型的拟合 |||

L模型的构建与预测

L模型的结果和预测

模型的预测-导管长度

L模型的构建与预测

L模型的结果和预测

模型的预测-气泡压力

L模型的构建与预测

L模型的结果和预测

模型的预测-表面张力

L模型的构建与预测

L模型的结果和预测

模型的预测-气穴化程度

L模型的构建与预测

L模型的结果和预测

模型的预测-气穴化分布

L模型的构建与预测

L模型的结果和预测

负压下导水率的变化

- 负压下导水率有线性下降,且和枝条气穴化程度有关;
- •导水率变化包括临时及永久性变化;
- 脆弱性曲线会因负压而有非常大的变化。

模型的前景

- 模型对枝条物理参数与其脆弱性曲线的关系预测;
- •还需要进一步的实验来验证模型的预测。

谢谢!