#### Yujie's First Committee Meeting

Yujie Wang

Sperry Lab Department of Biology University of Utah

November 9, 2016





- Improve gas exchange model;
- Test the model;
- Make predictions of forest health.

#### Photosynthesis Optimization Model

#### Cowan and Farquhar (1977)

$$\int \delta E dt \ge 0; \int \delta A dt = 0 \tag{1}$$

$$\frac{\delta E}{\delta A} = \lambda \text{ if } \left(\frac{\delta E}{\delta A}\right)_0 \le \lambda \tag{2}$$

$$A = A_0; E = E_0 \text{ if } \left(\frac{\delta E}{\delta A}\right)_0 \ge \lambda \tag{3}$$

The disadvantage is the definition of  $\lambda$ , and there is no details of what  $\lambda$  should be.

#### **Empirical Model**

#### Ball, Woodrow and Berry (1987)

$$g_{sw} = k \cdot A \cdot \frac{h_s}{c_s} \tag{4}$$

Model was improved by implementing more practical equation, but there is no physiological concern.

#### Hydraulic Model

#### Sperry and Love (2015)

$$\Delta P = \Delta P' \cdot rac{(dE/dP)'}{(dE/dP)_{max}}$$

Stomatal control is defined by supply and demand functions: regulated  $P_{canopy}$  is regulated by hydraulic loss if no regulation applies.

(5)

#### Background

#### Photosynthetic-Hydraulic Trade-off Model

#### Sperry et al. (2016)



#### Summary of Models

Table 1: Summary of the basic parameters in each model.

| Model  | Light | $CO_2$ | VPD | Soil | VC  |
|--------|-------|--------|-----|------|-----|
| PO1977 | Yes   | Yes    | Yes | No   | No  |
| EM1987 | Yes   | Yes    | Yes | No   | No  |
| HO2015 | No    | No     | Yes | Yes  | Yes |
| TO2016 | Yes   | Yes    | Yes | Yes  | Yes |

L Improve the trade-off model

### Aim 1: Improve the model

### Post-drought physiology;

- Optimal leaf investments;
- Leaf shedding and Rubisco activity.

## Post-drought Physiology

- Drought history;
- Xylem refill;
- Rubisco activity shift;
- Abscisic acid tempo.



L Improve the trade-off model

### Optimal leaf investment

- Leaf photosynthesis benefit;
- leaf respiration cost;
- Leaf construction cost;
- Root and Stem respiration;
- Nutrient limitation.



Improve the trade-off model

#### Leaf shedding and Rubisco activity

- Drought stress;
- Drought time;
- Opportunity cost;
- Leaf shedding;
- Rubisco activity shift.



L Test the model

#### Aim 2: Test the model

- Response curves of VPD, [CO<sub>2</sub>], Light, Soil Moisture;
- Post-drought physiology;
- Leaf investment strategy;
- Leaf shedding strategy.

Predict forest health

#### Aim 3: Predict forest health

- Implement climate and hydrology;
- Correlate mortality, productivity with drought index;
- Predict the forest health and species mortality.

Predict forest health

### Climate and Hydrology

- Climate: VPD, temperature, wind, precipitation, light, [CO<sub>2</sub>];
- Hydrology: top soil evaporation, soil type, soil layers, ground water;
- Forest: forest composition, tree distribution, root distribution, leaf shedding.

Research Plan

Predict forest health

#### Diagram



Predict forest health



- Correlate drought index and forest health with data collected from real forest stands;
- Make a library of different climate, hydrology, and forest composition; and run simulations of the library;
- Make predictions of forest health and species mortality in each stand.

# Thanks!