CARBON GAIN AND RISK IN MODELING LEAF GAS EXCHANGE

WANG, Yujie

Sperry Lab, University of Utah

December 3, 2019

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Significance of leaf gas exchange

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhan model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Uncertainty in land surface system

Figure adapted from Le Quéré et al. (2018)

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Increasing CO₂ concentration

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchang

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Increasing temperature

Soil moisture change

Introduction

Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhan model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Conclusions

Figure from Dai (2013)

Role of land in the future

CO₂ Sink?

CO₂ Source?

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchang

Quantify A

Mesophyll limitation Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Leaf gas exchange through stomata

PLANT PHYSIOLOGY

Abscisic acid Leaf turgor pressure Hydraulic conductance Photosynthetic capacity Mesophyll conductance

ENVIRONMENT

Atmospheric CO₂ Vapor pressure deficit Air temperature

Solar radiation Wind speed Soil moisture

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A Mesophyll limitation Model solution mprovements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhan model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

The easiest way—statistical regression approach

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A Mesophyll limitati

Improvements

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

A better way—physiological trait-based approach

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatio Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

A better way—challenges

How to model stomatal behavior from traits?How to model the shift of traits?

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

What we know

PLANT PHYSIOLOGY H_2Q_2

Abscisic acid

Leaf turgor pressure

Hydraulic conductance

Photosynthetic capacity

Mesophyll conductance

 CU_2

ENVIRONMENT

Atmospheric CO₂ Vapor pressure deficit Air temperature

Solar radiation Wind speed

Soil moisture

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Aesophyll limitation Aodel solution mprovements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Modeling leaf gas exchange

Stomatal optimization

$$\max(A(E_{\text{leaf}}) - \Theta(E_{\text{leaf}}))$$

The optimal solution is:

$$\frac{\mathrm{d}A}{\mathrm{d}E} = \frac{\mathrm{d}\Theta}{\mathrm{d}E}$$

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatio Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Conclusions

Wolf et al. (2016)

- 1. Quantify $A(E_{\text{leaf}})$
- **2**. Quantify $\Theta(E_{\text{leaf}})$
- 3. Test different optimization models
- 4. Way forward—long-term prediction

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify @

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Symbols

A Photosynthesis; Θ Penalty; E, E_{leaf} Transpiration; dA/dE Marginal carbon gain; $d\Theta/dE$ Marginal water penalty.

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Part I Quantify Carbon Gain

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchang

Quantify A

Mesophyll limitation Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Classic photosynthesis model

Introduction Leaf gas exchange Global climate change

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchar

Quantify A

Mesophyll limitation Model solution

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhan model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Mysophyll limitation

Introduction

Global climate change Modeling leaf gas exchange

Quantify A Mesophyll limitation Model solution

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Conclusions

Wang et al., (in review)

Mesophyll limitation as an "error"

Introduction Leaf gas exchange Global climate change

Quantify A Mesophyll limitation Model solution

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Improved photosynthesis model

Introduction Leaf gas exchange

Global climate change Modeling leaf gas exchange

Quantify A Mesophyll limitation Model solution

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhan model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Improvement of modeled A

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A Mesophyll limitation Model solution Improvements

Oursehilter

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

- ✓ Quantify $A(E_{\text{leaf}})$
- **2**. Quantify $\Theta(E_{\text{leaf}})$
- 3. Test different optimization models
- 4. Way forward—long-term prediction

Introduction Leaf gas exchange

Global climate change Modeling leaf gas exchange

Quantify A Mesophyll limitation Model solution Improvements

Quantify @

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Part II Quantify Water Penalty

Introduction Leaf gas exchange

Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify O

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify Θ

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Leaf gas exchange

Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatio Model solution Improvements

Quantify @

Potential penalties

Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Models based on different Θ

Holtta *et al.* (2017) Dewar et al. (2018) Huang et al. (2018)

.......

Wolf et al. (2016) Sperry et al. (2017) Anderegg et al. (2018) Eller et al. (2019)

....

Cowan & Farquhar (1977)

Manzoni et al. (2013) Prentice et al. (2014) Lu et al. (2016)

.....

Potential penalties

Model reviewed

Model	Reference	Water Penalty (Θ or Θ')	Marginal Penalty $(d\Theta/dE \text{ or } d\Theta'/dE)$	Criteria I–III	Response Criteria IV–VII DCPK	Fitting parameters
Cowan- Farquhar	(Cowan and Farquhar, 1977)	$\Theta = \frac{E_{\text{leaf}}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Manzoni	(Manzoni et al., 2013)	$\Theta = \frac{E_{\text{leaf}}}{\Lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\Lambda}$	YNN	NNNN	٨
Prentice	(Prentice et al., 2014)	$\Theta = A \cdot \left(1 - \frac{1}{c_{\rm E}E_{\rm leaf} + c_{\rm V}V_{\rm cmax}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{leaf}} + \frac{c_{\mathrm{V}}}{c}V_{\mathrm{cmax}}}$	YNY	YYNN	<i>c</i> _E , <i>c</i> _V
Lu	(Lu et al., 2016)	$\Theta = rac{E_{ ext{leaf}}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Wolf- Anderegg	(Wolf et al., 2016) (Anderegg et al., 2018)	$\Theta = aP^2 + bP + c$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{2aP+b}{K}$	YYN	NNYY	$a, b, K_{\rm rhiz}$
Sperry	(Sperry et al., 2017)	$\Theta = A_{\max} \cdot \left(1 - \frac{K}{K_{\max}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A_{\mathrm{max}}}{K_{\mathrm{max}}}$	YYY	YYYY	K _{rhiz}
Eller	(Eller et al., 2018)	$\Theta = A \cdot \left(1 - \frac{K}{K_{\max,0}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A}{K}$	YYY	YYYN	K _{rhiz}
New Model		$\Theta = A \cdot \frac{E_{\text{leaf}}}{E_{\text{crit}}}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{crit}} - E_{\mathrm{leaf}}}$	YYY	үүүү	K _{rhiz}
Hölttä	(Hölttä et al., 2017)	$\Theta' = A_{\rm ww} \cdot \frac{\rm SC}{\rm SC_{max}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{\mathrm{SC}_{\mathrm{max}} - \mathrm{SC}} \cdot \frac{\mathrm{d}\mathrm{SC}}{\mathrm{d}E}$	YYY	YYYY	SC _{max} , K _{rhiz} , anatomy
Dewar CAP	(Dewar et al., 2018)	$\Theta' = A_{\rm ww} \cdot \frac{P}{P_{\rm crit}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{K\cdot(P_{\mathrm{crit}}-P)}$	YYY	YYYY	K _{rhiz}

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatio Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquha

The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatio Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Criteria for a unique solution

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify G

Potential penalties

Penalty criteria

Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Criteria for responses to the environment

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties

Penalty criteria

Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify 6

Potential penalties

Penalty criteria

Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify 6

Potential penalties

Penalty criteria

Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify 6

Potential penalties

Penalty criteria

Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify 6

Potential penalties

Penalty criteria

Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties

Penalty criteria

Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

5. increases with higher CO_2

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties

Penalty criteria

Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

6. increases with drier soil

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties

Penalty criteria

Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

7. increases with lower hydraulic conductance

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify 6

Potential penalties

Penalty criteria

Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Criteria for $d\Theta/dE$

Criteria for a unique solution

- 1. $d\Theta/dE > 0$
- 2. $d\Theta/dE \Uparrow$ when $E_{\text{leaf}} \Uparrow$
- 3. $d\Theta/dE < dA/dE$ when $E_{\text{leaf}} = 0$

Criteria for stomatal responses

- 4. $d\Theta/dE \Downarrow$ when air gets drier
- 5. $d\Theta/dE \Uparrow$ when $[CO_2] \Uparrow$
- 6. d Θ /d*E* \Uparrow when soil gets drier
- 7. d Θ /d*E* \Uparrow when hydraulic conductance \Downarrow

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify G

Potential penalties

Penalty criteria

Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Model	Reference	Water Penalty (Θ or Θ')	Marginal Penalty (d⊖/dE or d⊖′/dE)	Criteria I–III	Response Criteria IV–VII DCPK	Fitting parameters
Cowan- Farquhar	(Cowan and Farquhar, 1977)	$\Theta = \frac{E_{\text{leaf}}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Manzoni	(Manzoni et al., 2013)	$\Theta = \frac{E_{\text{leaf}}}{\Lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\Lambda}$	YNN	NNNN	٨
Prentice	(Prentice et al., 2014)	$\Theta = A \cdot \left(1 - \frac{1}{c_{\rm E}E_{\rm leaf} + c_{\rm V}V_{\rm cmax}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{leaf}} + \frac{c_{\mathrm{V}}}{c_{\mathrm{r}}}V_{\mathrm{cmax}}}$	YNY	YYNN	$c_{\rm E}, c_{\rm V}$
Lu	(Lu et al., 2016)	$\Theta = rac{E_{ ext{leaf}}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Wolf- Anderegg	(Wolf et al., 2016) (Anderegg et al., 2018)	$\Theta = aP^2 + bP + c$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{2aP+b}{K}$	YYN	NNYY	a, b, K _{rhiz}
Sperry	(Sperry et al., 2017)	$\Theta = A_{\max} \cdot \left(1 - \frac{K}{K_{\max}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A_{\mathrm{max}}}{K_{\mathrm{max}}}$	YYY	YYYY	<i>K</i> _{rhiz}
Eller	(Eller et al., 2018)	$\Theta = A \cdot \left(1 - \frac{K}{K_{\max,0}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A}{K}$	YYY	YYYN	K _{rhiz}
New Model		$\Theta = A \cdot \frac{E_{\text{leaf}}}{E_{\text{crit}}}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{crit}} - E_{\mathrm{leaf}}}$	YYY	YYYY	<i>K</i> _{rhiz}
Hölttä	(Hölttä et al., 2017)	$\Theta' = A_{\rm ww} \cdot \frac{\rm SC}{\rm SC_{max}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{\mathrm{SC}_{\mathrm{max}} - \mathrm{SC}} \cdot \frac{\mathrm{d}\mathrm{SC}}{\mathrm{d}E}$	YYY	YYYY	SC _{max} , K _{rhiz} , anatomy
Dewar CAP	(Dewar et al., 2018)	$\Theta' = A_{\rm ww} \cdot \frac{P}{P_{\rm crit}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{K \cdot (P_{\mathrm{crit}} - P)}$	YYY	YYYY	K _{rhiz}

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farqu

The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Model	Reference	Water Penalty (Θ or Θ')	Marginal Penalty (d⊖/dE or d⊖′/dE)	Criteria I–III	Response Criteria IV–VII DCPK	Fitting parameters
Cowan- Farquhar	(Cowan and Farquhar, 1977)	$\Theta = \frac{E_{\text{leaf}}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Manzoni	(Manzoni et al., 2013)	$\Theta = rac{E_{ ext{leaf}}}{\Lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\Lambda}$	YNN	NNNN	٨
Prentice	(Prentice et al., 2014)	$\Theta = A \cdot \left(1 - \frac{1}{c_{\rm E}E_{\rm leaf} + c_{\rm V}V_{\rm cmax}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{leaf}} + \frac{c_{\mathrm{V}}}{c_{\mathrm{r}}} V_{\mathrm{cmax}}}$	YNY	YYNN	$c_{\rm E}, c_{\rm V}$
Lu	(Lu et al., 2016)	$\Theta = rac{E_{ ext{leaf}}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Wolf- Anderegg	(Wolf et al., 2016) (Anderegg et al., 2018)	$\Theta = aP^2 + bP + c$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{2aP+b}{K}$	YYN	NNYY	a, b, K _{rhiz}
Sperry	(Sperry et al., 2017)	$\Theta = A_{\max} \cdot \left(1 - \frac{K}{K_{\max}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A_{\mathrm{max}}}{K_{\mathrm{max}}}$	YYY	YYYY	K _{rhiz}
Eller	(Eller et al., 2018)	$\Theta = A \cdot \left(1 - \frac{K}{K_{\max,0}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E}\cdot\frac{A}{K}$	YYY	YYYN	K _{rhiz}
New Model		$\Theta = A \cdot \frac{E_{\text{leaf}}}{E_{\text{crit}}}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{crit}} - E_{\mathrm{leaf}}}$	YYY	YYYY	K _{rhiz}
Hölttä	(Hölttä et al., 2017)	$\Theta' = A_{\rm ww} \cdot \frac{\rm SC}{\rm SC_{max}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{\mathrm{SC}_{\mathrm{max}} - \mathrm{SC}} \cdot \frac{\mathrm{d}\mathrm{SC}}{\mathrm{d}E}$	YYY	YYYY	SC _{max} , K _{rhiz} , anatomy
Dewar CAP	(Dewar et al., 2018)	$\Theta' = A_{\rm ww} \cdot \frac{P}{P_{\rm crit}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{K\cdot(P_{\mathrm{crit}}-P)}$	YYY	YYYY	K _{rhiz}

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review

The Cowan & Farquha model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Example 1: The Cowan-Farquhar model

Criterion

$$\max\left(A - \frac{E_{\text{leaf}}}{\lambda}\right)$$

Marginal penalty

$$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$$

Cowan and Farquhar (1977)

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review

The Cowan & Farquhar model

The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Response to VPD

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review

The Cowan & Farquhar model

The Sperry mode A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Response to CO₂

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review

The Cowan & Farquhar model

The Sperry mode A new model

Model Tests

Testing datasets Model performance

Trait shift

Leaf investment Optimal leaf investment Sensitivity

Response to drought (history)

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review

The Cowan & Farquhar model

The Sperry mode A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Model	Reference	Water Penalty (Θ or Θ')	Marginal Penalty (d⊖/dE or d⊖′/dE)	Criteria I–III	Response Criteria IV–VII DCPK	Fitting parameters
Cowan- Farquhar	(Cowan and Farquhar, 1977)	$\Theta = rac{E_{ ext{leaf}}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Manzoni	(Manzoni et al., 2013)	$\Theta = \frac{E_{\text{leaf}}}{\Lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\Lambda}$	YNN	NNNN	٨
Prentice	(Prentice et al., 2014)	$\Theta = A \cdot \left(1 - rac{1}{c_{\mathrm{E}}E_{\mathrm{leaf}} + c_{\mathrm{V}}V_{\mathrm{cmax}}} ight)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{leaf}} + \frac{c_{\mathrm{V}}}{c_{\mathrm{r}}}V_{\mathrm{cmax}}}$	YNY	YYNN	<i>c</i> _E , <i>c</i> _V
Lu	(Lu et al., 2016)	$\Theta = \frac{E_{\text{leaf}}}{\lambda}$	$rac{\mathrm{d}\Theta}{\mathrm{d}E}=rac{1}{\lambda}$	YNN	NNNN	λ
Wolf- Anderegg	(Wolf et al., 2016) (Anderegg et al., 2018)	$\Theta = aP^2 + bP + c$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{2aP+b}{K}$	YYN	NNYY	$a, b, K_{\rm rhiz}$
Sperry	(Sperry et al., 2017)	$\Theta = A_{\max} \cdot \left(1 - \frac{K}{K_{\max}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A_{\mathrm{max}}}{K_{\mathrm{max}}}$	YYY	YYYY	K _{rhiz}
Eller	(Eller et al., 2018)	$\Theta = A \cdot \left(1 - \frac{K}{K_{\max,0}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A}{K}$	YYY	YYYN	K _{rhiz}
New Model		$\Theta = A \cdot \frac{E_{\text{leaf}}}{E_{\text{crit}}}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{crit}} - E_{\mathrm{leaf}}}$	YYY	YYYY	K _{rhiz}
Hölttä	(Hölttä et al., 2017)	$\Theta' = A_{\rm ww} \cdot \frac{\rm SC}{\rm SC_{max}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{\mathrm{SC}_{\mathrm{max}} - \mathrm{SC}} \cdot \frac{\mathrm{d}\mathrm{SC}}{\mathrm{d}E}$	YYY	YYYY	SC _{max} , K _{rhiz} , anatomy
Dewar CAP	(Dewar et al., 2018)	$\Theta' = A_{\rm ww} \cdot \frac{P}{P_{\rm crit}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{K \cdot (P_{\mathrm{crit}} - P)}$	YYY	YYYY	K _{rhiz}

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify @

Potential penalties Penalty criteria Model review The Cowan & Farquhar model

The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Example 2: The Sperry model

Optimization criterion

$$\max\left(\frac{A}{A_{\max}} - \left(1 - \frac{K}{K_{\max}}\right)\right), K = \frac{dE}{dP}$$

Marginal penalty

$$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A_{\mathrm{max}}}{K_{\mathrm{max}}}$$

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify E

Potential penalties Penalty criteria Model review The Cowan & Farquhar model

The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Conclusions

Sperry et al. (2017)

Response to drought

Introduction

Leat gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model

The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shift

Leaf investment Optimal leaf investment Sensitivity

Model	Reference	Water Penalty (Θ or Θ')	Marginal Penalty (d⊖/dE or d⊖′/dE)	Criteria I–III	Response Criteria IV–VII DCPK	Fitting parameters
Cowan- Farquhar	(Cowan and Farquhar, 1977)	$\Theta = \frac{E_{\text{leaf}}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Manzoni	(Manzoni et al., 2013)	$\Theta = \frac{E_{\text{leaf}}}{\Lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\Lambda}$	YNN	NNNN	٨
Prentice	(Prentice et al., 2014)	$\Theta = A \cdot \left(1 - \frac{1}{c_{\rm E}E_{\rm leaf} + c_{\rm V}V_{\rm cmax}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{leaf}} + \frac{c_{\mathrm{V}}}{c_{\mathrm{r}}}V_{\mathrm{cmax}}}$	YNY	YYNN	$c_{\rm E}, c_{\rm V}$
Lu	(Lu et al., 2016)	$\Theta = rac{E_{ ext{leaf}}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Wolf- Anderegg	(Wolf et al., 2016) (Anderegg et al., 2018)	$\Theta = aP^2 + bP + c$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{2aP+b}{K}$	YYN	NNYY	$a, b, K_{ m rhiz}$
Sperry	(Sperry et al., 2017)	$\Theta = A_{\max} \cdot \left(1 - rac{K}{K_{\max}} ight)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A_{\mathrm{max}}}{K_{\mathrm{max}}}$	YYY	YYYY	K _{rhiz}
Eller	(Eller et al., 2018)	$\Theta = A \cdot \left(1 - \frac{K}{K_{\max,0}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E}\cdot\frac{A}{K}$	YYY	YYYN	<i>K</i> _{rhiz}
New Model		$\Theta = A \cdot \frac{E_{\text{leaf}}}{E_{\text{crit}}}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{crit}} - E_{\mathrm{leaf}}}$	YYY	YYYY	<i>K</i> _{rhiz}
Hölttä	(Hölttä et al., 2017)	$\Theta' = A_{\rm ww} \cdot \frac{\rm SC}{\rm SC_{max}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{\mathrm{SC}_{\mathrm{max}} - \mathrm{SC}} \cdot \frac{\mathrm{d}\mathrm{SC}}{\mathrm{d}E}$	YYY	YYYY	SC _{max} , K _{rhiz} , anatomy
Dewar CAP	(Dewar et al., 2018)	$\Theta' = A_{\rm ww} \cdot \frac{P}{P_{\rm crit}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{K \cdot (P_{\mathrm{crit}} - P)}$	YYY	YYYY	K _{rhiz}

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Example 3: A new model

Criterion

$$\max\left(A\cdot\left(1-\frac{E_{\text{leaf}}}{E_{\text{crit}}}\right)\right)$$

Marginal penalty

$$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{crit}} - E_{\mathrm{leaf}}}$$

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Conclusions

Wang et al. (in review)

Response to drought

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Testing datasets

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

- ✓ Quantify $A(E_{\text{leaf}})$
- ✓ Quantify $\Theta(E_{\text{leaf}})$
- 3. Test different optimization models
- 4. Way forward—long-term prediction

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify E

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model

A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Part III Testing The Models

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Birch dataset

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquha model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Conclusions

Wang et al. (2019)

Aspen dataset

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Conclusions

Venturas et al. (2018)

Anderegg dataset

Leaf gas exchange

Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify @

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Conclusions

Anderegg et al. (2018)

Birch dataset

data from Wang et al. (2019)

MAPE: mean absolute percentage error for A, P, and E

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Aspen dataset

data from Venturas et al. (2018)

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatio Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Anderegg dataset

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatio Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Model	Reference	Water Penalty (Θ or Θ')	Marginal Penalty (d⊖/dE or d⊖′/dE)	Criteri I–III	Response a Criteria IV–VII DCPK	Fitting parameters
Cowan- Farquhar	(Cowan and Farquhar, 1977)	$\Theta = rac{E_{ ext{leaf}}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Manzoni	(Manzoni et al., 2013)	$\Theta = \frac{E_{\text{leaf}}}{\Lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\Lambda}$	YNN	NNNN	٨
Prentice	(Prentice et al., 2014)	$\Theta = A \cdot \left(1 - \frac{1}{c_{\rm E}E_{\rm leaf} + c_{\rm V}V_{\rm cmax}} \right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{leaf}} + \frac{c_{\mathrm{V}}}{c_{\mathrm{r}}}V_{\mathrm{cmax}}}$	YNY	YYNN	<i>c</i> _E , <i>c</i> _V
Lu	(Lu et al., 2016)	$\Theta = \frac{E_{\rm leaf}}{\lambda}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{1}{\lambda}$	YNN	NNNN	λ
Wolf- Anderegg	(Wolf et al., 2016) (Anderegg et al., 2018)	$\Theta = aP^2 + bP + c$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{2aP+b}{K}$	YYN	NNYY	$a, b, K_{\rm rhiz}$
Sperry	(Sperry et al., 2017)	$\Theta = A_{\max} \cdot \left(1 - \frac{K}{K_{\max}}\right)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A_{\mathrm{max}}}{K_{\mathrm{max}}}$	YYY	YYYY	K _{rhiz}
Eller	(Eller et al., 2018)	$\Theta = A \cdot \left(1 - rac{K}{K_{\max,0}} ight)$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = -\frac{\mathrm{d}K}{\mathrm{d}E} \cdot \frac{A}{K}$	YYY	YYYN	K _{rhiz}
New Model		$\Theta = A \cdot \frac{E_{\text{leaf}}}{E_{\text{crit}}}$	$\frac{\mathrm{d}\Theta}{\mathrm{d}E} = \frac{A}{E_{\mathrm{crit}} - E_{\mathrm{leaf}}}$	YYY	YYYY	<i>K</i> _{rhiz}
Hölttä	(Hölttä et al., 2017)	$\Theta' = A_{\rm ww} \cdot \frac{\rm SC}{\rm SC_{max}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{\mathrm{SC}_{\mathrm{max}} - \mathrm{SC}} \cdot \frac{\mathrm{d}\mathrm{SC}}{\mathrm{d}E}$	YYY	YYYY	SC _{max} , K _{rhiz} , anatomy
Dewar CAP	(Dewar et al., 2018)	$\Theta' = A_{\rm ww} \cdot \frac{P}{P_{\rm crit}}$	$\frac{\mathrm{d}\Theta'}{\mathrm{d}E} = \frac{A}{K \cdot (P_{\mathrm{crit}} - P)}$	YYY	YYYY	K _{rhiz}

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

MATH is important.

Leaf gas exchange Global climate change

Quantify A

Mesophyll limitation Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Frait shifts

Leaf investment Optimal leaf investment Sensitivity

Penalty is well represented by plant hydraulics

- Penalty is likely weighted by photosynthesis
- Trait-based models are very promising

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify ©

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

- ✓ Quantify $A(E_{\text{leaf}})$
- ✓ Quantify $\Theta(E_{\text{leaf}})$
- ✓ Test different optimization models
- 4. Way forward—long-term prediction

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify E

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

How about trait change?

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

PART IV MODELING TRAIT SHIFTS

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify E

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Disadvantages of trait-based model

The model needs a lot of trait inputs; The traits are not constant spatially or temporally.

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify E

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity
Environmental and physiological variables

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhan model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Optimal leaf area

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatio Model solution Improvements

Quantify @

Potential penalties Penalty criteria Model review The Cowan & Farquha model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investmen Sensitivity

Optimal leaf photosynthesis

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquha model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investmen Sensitivity

Optimal leaf investment

Optimization criterion

$$\max\left(\int A_{\rm day} - \int R_{\rm night} - \rm LCBM - \rm NS\right)$$

A_{day} Net photosynthetic rate in the day
 R_{night} Respiratory rate in the night
 LCBM Leaf construction costs in carbon biomass
 NS Leaf construction costs in nutrient supply

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify E

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts Leaf investment Optimal leaf investment

Introduction Leaf gas exchange Global climate change Modeling leaf gas exchan

Quantify A

Mesophyll limitation Model solution mprovements

Quantify @

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts Leaf investment Optimal leaf investment Sensitivity

Optimal leaf investment vs. climate

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts Leaf investment Optimal leaf investment Sensitivity

Other traits?

Vapor pressure deficit (VPD)-Atmospheric CO₂ (C_a) Air temperature Solar radiation Wind speed

Soil moisture-

Leaf photosynthetic capacity Leaf area Leaf drought resistance

Leaf hydraulic conductance Leaf nutrient supply cost Leaf construction cost Mesophyll limitation

–Stem drought resistance Stem hydraulic conductance

Tree density

-Root drought resistance Root hydraulic conductance Rhizosphere conductance Root depth

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhan model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shift

Leaf investment Optimal leaf investment Sensitivity

Optimal leaf investment vs. carbon cost (LCBM)

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatio Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquha model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shift

Leaf investment Optimal leaf investment Sensitivity

Optimal leaf investment vs. nutrient cost (NS)

Leaf gas exchange Global climate change

Quantify A

Mesophyn innitatio Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Optimal leaf investment vs. stand density

Optimal leaf investment vs. root depth

Optimal leaf investment vs. VPD and CO₂

Major drivers for leaf investment

Plant traits

- Leaf construction costs (carbon and nutrients)
- Root depth

Environmental conditions

- Stand density
- VPD
- Atmospheric CO₂

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify @

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shift

Leaf investment Optimal leaf investment Sensitivity

Plant trees!

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhan model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Plant trees!

	A yujie_111_optima_sensitivity_cluster_weather_il ×
OPEN EDITORS	
YUJIEGAINRISKMODEL	
> anatomy	3 ∉ for current ambient
> data	4 function GenerateOptimaUSA(weather, years, day_s, day_e, filename, d_lati, d_long, d_alti)
> earth	s # initialize the node 6 divergencement = 100 0
> leaf rubisco	7 Beversele at the = vuitet 11nit()
> math	
> node 111	9 @everywhere opt_node.d_lati = \$d_lati
> obotosynthesis	10 @everywhere opt_node.d_long = \$d_long
> nhusics	11 @everywhere opt_node.d_alti = \$d_alti
) print	12 @everyshere Yujie111UpdateSoilFromSHC(opt_node, 1.0)
> point	13 geverywhere YujielliUpdateLeaf(opt_mode, 1000.0, 70.0)
v snints	
 scripts 	15 # UPTITE LIFE CHIEGO FUNCTION 16 BAUERUSHINE WART VERS = CSU read/Sweather]
> yngn	
 real investment 	18 Beverywhere function GetOptimaForYear(yeardays)
A yajie_111_map_leat_cca.ji	
A yupe_111_map_leat_investment_i	20 year = yeardays[1]
A yujie_111_map_optima_cica_l	21 dayst = yeardays[2]
A yujie_111_map_optima_shiftyl	22 dayen = yeardays[3]
A yujie_111_map_sun_shadeal	23 twp_node = deepcopy(opt_node)
A yujie_111_optima_sensitivity_duster_weather_gs.jl	21 Int_lates = opt_node.inter
A yujie_111_optima_sensitivity_duster_weatheral	26 peliator type ", year ", year ")
A yujie_111_optima_sensitivity_cluster.jl	27 weat mask = (weat years.year .= year)
A yujie_111_optima_sensitivity.jl	28 weat_year = weat_years[weat_mask,:]
sujie_111_optimal_leat_investment.jl	29 mask_days = (weat_year.Day .>= dayst) .* (weat_year.Day .<= dayen)
A yujie_111_plot_annual_simu,il	30 weat_days = weat_vear[mask_days,:]
✓ safety_efficiency_tradeoff	31 weat_days.CO2 = 40.0
A yujie_111_test_tradeoff.jl	32 opt_iaba.opt_wmax.opt_wrof = YujieiiiGetOptimalInvestment(tmp_node, weat_days, ini_laba, ini_wmax, max_wmax) Yudieidilundenaafform and taba ant ymmax.
	ant cica = Yudiatticetantoprinoue, oprimaxi and dars)
	35 printin'Einisha vaar (Vinn')
	36 return foot laba opt wax opt prof opt cica[1]]
 .gitignore 	
A include.jl	
A load processors il	40 yeardays = []
🛔 kadji	41 for 1 in 1:length(years)
A mainil	4.2 and and a second
README.md	44 #println(yeardays)
🗛 testil	45 result - pmap(GetOptimaForYear, yeardays)
	46 writedim(filename, result)
	48 return result
7011110AA	

Introduction

th III

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquha model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shift

Leaf investment Optimal leaf investment Sensitivity

Sensitivity to climate

Introduction Leaf gas exchange Global climate change

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Sensitivity to climate

Introduction Leaf gas exchange Global climate change

Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquha model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shift:

Leaf investment Optimal leaf investment Sensitivity

- ✓ Quantify $A(E_{\text{leaf}})$
- \checkmark Quantify $\Theta(E_{\text{leaf}})$
- ✓ Test different optimization models
- ✓ Way forward—long-term prediction

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitatior Model solution Improvements

Quantify ©

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

CONCLUSIONS

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Conclusions

- Incorporating gas-phase mesophyll conductance improves photosynthesis modeling
- Water penalty is linked to plant hydraulic integrity
- Water penalty is weighted by photosynthesis opportunity
- Leaf investment is very sensitive to leaf construction costs and root depth
- Future research on how traits coordinate and acclimate to the environment is required

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify G

Potential penalties Penalty criteria Model review The Cowan & Farquhar model The Sperry model A new model

Model Tests

Testing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity

Publications For Students

Press & Media Blog Join Us

Introduction Leaf gas exchange

Global climate change Aodeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify 6

Potential penalties Penalty criteria Model review The Cowan & Farquha model The Sperry model A new model

Model Tests

Testing datasets Model performano

Trait shift

Leaf investment Optimal leaf investment Sensitivity

Conclusions

CLIMATE MODELING ALLIANCE

Vapor pressure deficit (VPD) Atmospheric CO₂ (C_a) Air temperature Solar radiation Wind speed

Acknowledgments

Supervisory committee

NSF

- John Sperry
- Bill Anderegg
- Fred Adler
- David Bowling
- Jim Ehleringer

Tom Kursar

Sperry lab

I am the last one...

Anderegg lab

- Martin Venturas
- Anna Trugman
- Xiaonan Tai

School of Biological Sciences

- Shannon Nielsen
- April Mills
- Christopher Morrow

Introduction

Leaf gas exchange Global climate change Modeling leaf gas exchange

Quantify A

Mesophyll limitation Model solution Improvements

Quantify E

Potential penalties Penalty criteria Model review The Cowan & Farquha model The Sperry model A new model

Model Tests

festing datasets Model performance

Trait shifts

Leaf investment Optimal leaf investment Sensitivity