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ABSTRACT

Modeling leaf gas exchange through the stomata is key to modeling the terrestrial

carbon and water fluxes. However, there has been great uncertainty in the land surface

models that tried to predict future carbon and water cycles due to the variability in (1)

the environment and thus the plants’ response to it and (2) plant functional traits both

spatially and temporally. Previous attempts that have been devoted to address these issues

showed great power in fitting existing data but little potential in predicting the future

because the fitted parameters (1) have not been trained at novel environment and (2) lack

physiological identities and thus have little potential to track the traits shift with space and

time. These deficits, however, can be addressed by the optimality theory. The benefit of gas

exchange through the leaf can be quantified by the instantaneous photosynthesis, and the

risks associated potentially lie in damage to hydraulic transport and reduction of water

supply. Mechanistically modeling the gain-risk optimization with plant functional traits

allows for predicting the future stomatal behavior with confidence. Further, the embedded

plant traits makes it possible to account for the trait variations.

This dissertation consists of works that aim to improve the modeling of leaf gas exchange

by incorporating the gain versus risk optimality theory based on plant traits. The chapters

include (1) a model that addresses the CO2 and H2O diffusion in anatomical scale to improve

the calculation of carbon gain—photosynthesis, (2) a review that quantifies the sources

for carbon risks in leaf gas exchange to guide how to define the risk, (3) an experimental

verification of a trait-based gain versus risk model performance by examining whole tree

level gas exchange in a growth chamber, and (4) a further development of the trait-based

model that provides insights on how to track the trait changes spatially and temporally.

Together these works have helped advance the modeling of gas exchange from the leaf level

to ecosystem level.
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CHAPTER 1

INTRODUCTION

Anthropogenic CO2 emission has resulted in a significant increase of CO2 concentration

from about 270 ppm to 410 ppm since the first industrial revolution, and during the last 60

years the concentration increased by almost 100 ppm (NASA GISS). The accumulated

greenhouse gas has led to increased mean annual temperature globally and hence

unprecedented global climate change. Global warming has caused unpredicted drought

stress to plants due to the increasing atmospheric demand for water and thus tree mortality

across the globe (Allen et al., 2010; Anderegg et al., 2016; Hartmann et al., 2015; McDowell

& Allen, 2015; Mcdowell et al., 2016). The rapidly changing environment and plants make

it extremely difficult to project the impacts on carbon and water cycles and forest health

from global climate change due to the elusive understanding of (1) how plants respond to

the changing environment and (2) how plants and forests change spatially and temporally.

The key to the first problem is the stomata on leaves, where gas exchange occurs. The

leaf diffusive conductances to H2O and CO2 are usually dynamically regulated via the

stomata to respond to the environmental cues, such as atmospheric humidity, soil moisture,

light, and atmospheric [CO2]. However, the complexity of stomatal control has been a great

challenge for modeler. One practical approach is to deduce empirical rules from empirical

observations (Ball et al., 1987; Leuning, 1995; Medlyn et al., 2011). This approach, though

fits well the existing data, shows little promise in predicting the future because the fitted

parameters (1) have not been validated in novel environment and (2) have no physiological

identities and thus cannot track the plant and forest level trait shifts. Another option is to

model the stomatal control mechanistically (i.e., modeling the guard cell behavior at cell

level). However, the qualitative mechanism remains unsettled (Chen et al., 2012; Hills et al.,

2012) and is impractical and too computational expensive for ecological studies (Buckley &

Mott, 2013).
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Potentially the most powerful solution is to derive the goal-oriented solution for optimal

stomatal behavior (e.g., assuming that plants optimize the water loss and carbon gain).

Instead of modeling the cell level mechanism, the goal-oriented solution aims towards

the evolutionary driver of stomatal behavior to ask why and how the plants regulate

the stomata. Therefore, the mystery of stomatal control mechanism is upscaled to the

concern of how to find the evolutionary driver. There have been many optimization

models with different optimization criteria since the first optimization model of Cowan &

Farquhar (1977). However, the optimization theory has not been improved much until a

carbon maximization hypothesis (Wolf et al., 2016), which explicitly posits plants maximize

difference of the carbon gain and carbon risk associated with stomatal opening. Models

based on the carbon maximization theory over compete the traditionally used Cowan

and Farquhar model and also showed equal or better prediction power compared to the

empirical approach, which curve fits the data (Anderegg et al., 2018; Venturas et al., 2018;

Wang et al., 2019). Despite the successful trials, it remains unclear in theory why or why

not the models work, and there are many important issues that are typically neglected (e.g.,

mesophyll conductance inside the leaf).

Key to the second problem is to model how the plant functional traits are optimized.

Fortunately, this is doable with the trait-based optimization models, which have interfaces

to different traits from leaf level such as photosynthetic capacity and leaf anatomy, to tree

level such as leaf area and biomass allocation to root and shoot, and to ecosystem level such

as tree density and forest composition. However, little is known about how these traits

coordinate with each other or how they will change. Thus, a mechanistic model of how the

trait coordination and shift influence the future water and carbon cycles is at demand.

1.1 The Chapters
This dissertation aims to provide answers to the two problems from both theoretical

and experimental works. In Chapter 2, a 3-dimensional gas exchange model is presented to

simulate the different diffusions of water vapor from the wet cell surfaces to the atmosphere

and of CO2 from the atmosphere to the palisade for typical hypostomatous leaves. The

gas-phase mesophyll conductance in the intercellular airspace is numerically computed

with the model and further summarized to analytical equations. The simplified computation
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of gas-phase mesophyll conductance allows for accounting for the variable total mesophyll

conductance and hence improve the accuracy of photosynthesis calculations.

In Chapter 3, a review of carbon gain and risk optimization models is made. In this

review, the carbon gain is defined as the instantaneous photosynthetic rate, which benefits

from the model in Chapter 2; the carbon risk associated is theorized to the risk in xylem

transport and in water supply. By quantitatively integrating the total loss of hydraulic

conductivity along the tree and computing the deficit of carbon for a given transpiration rate,

seven fundamental requirements for the defining the total risk are presented, answering

why and why not the optimization models work. The optimization models are further

tested with existing datasets to compare how each model performs. The review also

highlights how the plants ought to weight the risks in xylem transport and water supply

depending on the environment. With the carbon gain improved by incorporating variable

mesophyll conductance in Chapter 2 and the carbon risk improved by following the seven

requirements, the optimization theory holds promise to improve the land surface models.

Not only being able to predict the realistic trend, the optimization model should

also predict the stomatal performance with accuracy. Therefore, Chapter 4 describes an

experiment that has been conducted in a growth chamber to examine how stomata behave

when the tree is exposed to changing atmospheric [CO2], humidity, and soil drought. The

leaf level and tree level responses including leaf photosynthesis (A), whole tree transpiration

(E), and canopy leaf xylem pressure (P) were measured and compared to a trait-based

optimization model prediction. The mean absolute percentage error for combined A, E, and

P is 26.8% compared with the 37.5% for a standard empirical model. The good performance

of the trait-based model without curve fitting the data itself highlights the promise of

trait-based optimization models.

Equally important as the model performance with known traits, the ability to track

the change of traits is key to predict how water and carbon cycles and forest health

are influenced by the environment change. Therefore, Chapter 5 presents a higher-level

optimization of canopy leaf area and photosynthetic capacity based on an optimal stomatal

control model. The optimization is to spontaneously optimize leaf area and photosynthetic

capacity that maximize the return on investment of leaves. In brief, the benefit of the

investment is cumulative photosynthesis throughout the growing season whereas the cost
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of the investment is cumulative respiration from the leaves plus an one-time construction

cost of the leaves. Both the intrinsic traits such as vulnerability curves and construction cost

ratios, and the environmental cues such as soil water supply and atmospheric [CO2] are

varied from low to high values to examine how sensitive the optimal investment is to these

stimuli. Model simulations suggest the optimal investment is sensitive to environmental

cues include soil water supply, atmospheric [CO2], and atmospheric humidity. However, the

optimal investment is only sensitive to leaf-level traits including construction costs but not

sensitive to other intrinsic traits such as drought resistance and hydraulic transport efficiency.

The model simulations also suggest the ratio between internal [CO2] and atmospheric [CO2]

is conservative in the range from 0.6–0.8, and the ratio varies with the environment and

plant functional traits. The optimal leaf investment model highlights the key plant traits that

influence significantly the optimal leaf area and photosynthetic capacity, helping prevent

blind shoot over understanding the leaf investment strategy.
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CHAPTER 2

STOMATAL APERTURE AND LEAF ANATOMY DRIVE

VARIATION IN INTERCELLULAR LIMITATION TO

PHOTOSYNTHESIS

2.1 Summary
Plants uptake atmospheric CO2 for photosynthesis through adjustable stomatal pores

on the leaf surface, losing water by transpiration in the process. The diffusive conductance

of the stomatal pores to CO2 (GSC) is readily estimated from transpiration measurements.

However, the additional CO2 diffusive conductance through leaf mesophyll tissue to the

chloroplasts (GM) is difficult to measure and even more challenging to partition into its

intercellular gas-phase component (Gias) versus its intracellular liquid-phase component

(Gliq). We modeled gas-phase diffusion and derived an equation to calculate Gias for

hypostomatous leaves from readily measurable leaf anatomical traits. The gas-phase Gias

limitation relative to the stomatal limitation (GSC/Gias), increased with stomatal aperture,

stomatal frequency, spongy mesophyll thickness, and spongy mesophyll cellular density.

The Gias decreased with stomatal closure, a result that provided an alternative explanation

for the widely observed decline in GM with stomatal closure which has been previously

attributed to Gliq rather than Gias. The gas-phase limitation of GM (GM/Gias) averaged 0.59,

suggesting an important Gias limitation on GM and photosynthesis. Better estimates of Gias

will advance the understanding and modeling of leaf gas exchange and plant physiology.

• Keywords: CO2 diffusion; gas exchange; intercellular limitation; mesophyll

conductance; stomatal aperture

2.2 Introduction
Vascular plants exchange H2O for CO2 through stomata to photosynthesize. Within the

leaf, water can evaporate from any free cell wall surface that lacks a cuticle. In contrast, the

major sink for gas-phase CO2 in a typical C3 hypostomatous leaf is the palisade mesophyll,
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where the bulk of chloroplasts are located and more than 80% of photosynthesis occurs

(Smith et al., 1997). While both H2O and CO2 share the same diffusion path through the

boundary layer and stoma (captured by a stomatal conductance term, GS), most CO2 has to

diffuse further through an intercellular gas-phase space to the palisade cell walls before

moving through a liquid-phase intracellular layer to the chloroplasts. The extra gas-phase

intercellular conductance for CO2 (Gias) and liquid-phase intracellular conductance for

CO2 (Gliq) are generally lumped together in a mesophyll conductance term (GM, Berghuijs

et al., 2016; Flexas et al., 2008). Although GM can be examined experimentally (Ethier &

Livingston, 2004; Ethier et al., 2006; Evans, 1989; Harley et al., 1992; Lloyd et al., 1992), it is

neglected in most gas-exchange models (Ball et al., 1987; Cowan & Farquhar, 1977; Leuning,

1995; Love et al., 2019; Mackay et al., 2015; Medlyn et al., 2011; Sperry et al., 2017; Venturas

et al., 2018; Wang et al., 2019; Wolf et al., 2016) due to measurement challenges and a lack

of understanding of how and why GM responds to the environment (Carriquı́ et al., 2019;

Flexas et al., 2012; Flexas, Diaz-Espejo, et al., 2007). In this paper, we focus on the gas-phase

Gias limitation to CO2 diffusion, and assess its magnitude, dynamics, and importance for

modeling leaf gas exchange.

A number of studies have shown that GM may limit photosynthesis both theoretically

(Aalto et al., 1999; Parkhurst, 1977, 1994; Parkhurst et al., 1988) and experimentally (Berghuijs

et al., 2016; Evans et al., 2009; Flexas et al., 2012; Mott & Peak, 2011; Tosens et al., 2012). In

addition, experiments have shown that GM varies with the environment (e.g., GM decreases

with rising CO2 concentration; Berghuijs et al., 2016; Carriquı́ et al., 2019; Flexas et al., 2012;

Flexas, Diaz-Espejo, et al., 2007; Flexas et al., 2008), further complicating the modeling of

leaf gas exchange. Given that GM integrates both the gas- and liquid-phase components

(Gias and Gliq) and that the two components involve different mechanisms of responding to

changing environmental drivers, a mechanistic understanding of how GM responds to the

environment requires partitioning Gias and Gliq.

Previous attempts to quantify Gias differ in results. Experimentally measuring GM

separately in air and helox (air with N2 replaced by helium), Parkhurst & Mott (1990) found

Gias limitation to be significant in thick, hypostomatous leaves but low in amphistomatous

leaves. Yet, Genty et al. (1998) found nondetectable Gias limitation in Rosa rubiginosa L.

(hypostomatous) and Populus koreana×trichocarpa cv. “Peace” (amphistomatous) with the
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same experimental setup. Due to the difficulty of isolating Gias from GM and the fact that

Gias limitation is low for amphistomatous and some hypostomatous species, a Gias limitation

to photosynthesis has been assumed to be nonsignificant. However, Parkhurst modeled

the 3-dimensional (3D) diffusion and found that Gias was limiting in some circumstances,

and varied with stomatal aperture (Parkhurst, 1977, 1994; Parkhurst et al., 1988), which

is further supported by another 3D model (Aalto & Juurola, 2002; Aalto et al., 1999). In

contrast, 1-dimensional models suggest a constant Gias independent of stomatal closure

(Syvertsen et al., 1995; Terashima, 1995). Therefore, a more in-depth analysis is needed to

quantify the magnitude of Gias, understand how Gias varies with stomatal aperture, and

propagate the impact of Gias on total mesophyll conductance.

Here, we develop a 3D model that simulates the gas-phase diffusion of H2O and CO2

for typical hypostomatous leaf anatomy including the boundary layer, which is neglected

by other diffusion models. Modeling the gas-phase diffusion of H2O and CO2 also allows

us to link Gias directly to the commonly measured stomatal conductance. The present study

aims to (1) develop a simple and accurate method to estimate Gias from readily measurable

anatomical traits, (2) determine how Gias limitation varies with leaf anatomy and stomatal

aperture, and (3) evaluate how Gias limitation could influence the response of GM to the

environment.

2.3 Model Description
2.3.1 The theory

The total gas-phase conductance for CO2 from the air to the palisade layer (GTC)

equals the stomatal conductance for CO2 (GSC, including boundary layer and spongy

layer diffusion) and Gias in series:

1
GTC

=
1

GSC
+

1
Gias

. (2.1)

Solving for Gias yields

Gias =
GTC · GSC

GSC − GTC
. (2.2)

In terms of the diffusive resistance, intercellular resistance (Rias = 1/Gias) is the difference of

total gas-phase resistance (RTC = 1/GTC) and stomatal resistance (RSC = 1/GSC):
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Rias = RTC − RSC =
1

GTC
− 1

GSC
. (2.3)

The GSC can be calculated from measurements of the stomatal conductance to H2O (GSW,

including boundary layer and spongy layer diffusion): GSC = GSW/1.6, where the constant

factor 1.6 is derived from the molar conversion of diffusive coefficients of H2O and CO2 in

air. The GSW is typically calculated from measurements of leaf transpiration rate (E) and

the vapor mole fraction difference between leaf (wleaf) and air (wair):

GSW =
E

wleaf − wair
. (2.4)

The wleaf is estimated as the saturated vapor mole fraction at leaf temperature, and it also

declines with more negative leaf water potential according to the Kelvin equation (Buckley

& Sack, 2019; Vesala et al., 2017).

The GTC cannot be measured or calculated directly due to the inability of measuring

internal CO2 concentration gradients. Therefore, we modeled GSW and GTC from 3D

diffusion of H2O and CO2 for a hypostomatous leaf. The GSW (= 1.6 GSC) was computed

from equation 2.4 for steady-state diffusion of water vapor, assuming water could evaporate

from all internal cell wall surfaces. The GTC was modeled assuming all CO2 was absorbed

at the boundary between palisade and spongy mesophyll. The Gias was computed from

GTC and GSC (equation 2.2).

2.3.2 Diffusion model

Our 3D model resembles those developed by Parkhurst in treating the gas diffusion in a

finite mesh defined by a series of three cylinders centered on a stomatal pore (Parkhurst,

1977, 1994; Parkhurst et al., 1988). The external cylinder represents the boundary layer, the

central cylinder is the stomatal pore, and the internal cylinder is the spongy mesophyll

(Fig. 2.1). Diffusion across the cuticle was assumed to be negligible under physiologically

active situations. Discretizing the cylinder gas volume allowed us to model diffusion in

three dimensions: normal to the leaf surface as well as laterally in all planes within the

boundary layer and spongy air space (Fig. 2.1). The diffusive conductance of each cylinder

was modeled separately and combined in series to give GSW, GSC, and GTC. Diffusive

conductance is defined as the steady state molar diffusion rate per leaf area per mole
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fraction difference between source and sink (conductance unit: mol s−1 m−2 leaf area).

The modeled diffusive conductance does not depend on the mole fraction difference

or the direction of diffusion. Model code (Python 3.7.2, Python Software Foundation)

is available at https://github.com/Yujie-WANG/Published-Codes-Yujie-WANG. Model

variables, default values, and ranges tested in the sensitivity analysis are listed in Table 2.1.

2.3.2.1 Boundary layer

The boundary layer cylinder has an equivalent radius (Rbd) for a circle with the average

leaf area per stoma and a length of boundary layer thickness (Lbd). The Rbd is a function

of stomatal frequency. The Lbd (unit: m) varies with leaf width (lw, unit: m) and wind

speed (ws, unit: m s-1): Lbd = 0.004×
√

lw/ws (Nobel, 2009). We modeled the boundary

layer diffusive conductance for H2O (GH,bd) by setting the plane opening of the stomatal

cylinder as the diffusion source and the atmospheric end of the boundary layer cylinder

as the diffusion sink (Fig. 2.1b). We divided the boundary cylinder into 11–12 cylindrical

shells in the radial direction and 20 equally thick layers in the axial direction (Fig. 2.1a). If

the stomatal pore radius (Rst) was 5 µm or less, only one shell was added to the innermost

cylinder with radius of Rst; otherwise, two evenly thick shells were added to the innermost

cylinder. The rest of the cylinder from Rst to Rbd was divided into ten equally thick shells

with the thickness of (Rbd–Rst)/10. For each shell, the geometrical radius was computed as

r =
√
(r2

out + r2
in)/2, where rout and rin were the radii of the outer and inner shell boundary,

respectively.

The diffusive conductance is independent of the source-to-sink mole fraction difference,

which we set to 1 (source = 1, sink = 0). We set the initial vapor fraction to 0 for each

element in the boundary cylinder. Within a small time interval (∆t), we modeled the

simultaneous diffusion for each element from the vapor fraction difference at time t− ∆t.

In this framework, it is necessary to maintain a sufficiently small ∆t to ensure the vapor

fraction in each element does not exceed the permissible range from 0 to 1. In each iteration,

the radial diffusion rate between adjacent rings in the same layer was calculated using

J = 2π · D · ∆C/ln
(

r2

r1

)
, where ∆C is the mole fraction difference, and r2 and r1 are the

geometric radii of the adjacent ring elements (Crank, 1975; Wang et al., 2015). The axial

diffusion rate between adjacent layers in the same shell was calculated using J = D ·∆C/∆L,
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where ∆L is the average distance from two adjacent layers. Then vapor fraction was

updated for each element based on diffusion during ∆t. We ran the diffusion model until it

reached steady-state (when the diffusion rate from the source equaled that to the sink), and

calculated GH,bd as the diffusion rate of H2O at steady state per mole fraction difference

per leaf area. The boundary layer conductance for CO2 (GC,bd) was computed as GH,bd/1.6

because the diffusion paths for the two gasses were the same in the boundary layer.

2.3.2.2 Stomatal pore

The stomatal cylinder has an equivalent radius for the stomatal pore aperture (namely

Rst) and a length of stomatal pore depth represented by abaxial epidermis thickness (Lst).

Variation in the Rst setting accounts for both the anatomical differences among species-

specific maximal stomatal radius (Rst,max) and the stomatal aperture changes as the guard

cells open and close (Rst ≤ Rst,max). We modeled the stomatal pore conductance for H2O

(GH,st) by setting the inside face of the cylinder as diffusion source and the outside face as

the sink (Fig. 2.1c). The simple stomatal pore geometry allows for an analytical solution of

GH,st from the Fick’s first law (derived in supporting information, Note 2.7.1):

GH,st = D · Patm

RT
· 1

Lst
· R2

st

R2
bd

, (2.5)

where D is the diffusion coefficient of water vapor in the air (unit: m2 s−1), R is the gas

constant (8.314 Pa m3 K−1 mol−1), T is the temperature in K, and Patm is the atmospheric

pressure in Pa. Here we used Patm = 101325 Pa, and T = 298.15 K (25 ◦C). The stomatal pore

conductance for CO2 (GC,st) was calculated as

GC,st =
GH,st

1.6
, (2.6)

because the diffusion path for the two gasses are the same across the stomata. Note that

GH,st and GC,st are different from GSW and GSC, which include boundary layer and spongy

mesophyll components.

2.3.2.3 Spongy mesophyll

The spongy cylinder has a radius of Rsp (equals to Rbd) and a length (Lsp) set to the

thickness of the spongy mesophyll. By default, the spongy cylinder is assumed to be empty

with no mesophyll cells, and the impact of adding cells to this volume was evaluated by
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the intercellular air fraction ( fias, see below and Discussion). We meshed the spongy layer

into 11–12 shells and 20 layers as for the boundary layer and used the same equations

for running the diffusion model. The source and sink locations depended on whether

GSW or GTC was modeled. For GSW, we modeled the spongy layer conductance for H2O

(G∅
H,sp, where ∅ denoted that the spongy mesophyll cylinder was completely gas filled)

assuming all interior surfaces as potential sources and the inner face of the stomatal cylinder

as the sink (Fig. 2.1d). For GTC, we modeled the spongy layer conductance for CO2 (G∅
C,sp)

assuming the inner face of the stomatal cylinder as the source and the spongy-palisade

boundary as the gas-phase CO2 sink.

The assumption of an empty spongy cylinder underestimates the GH,sp but overestimates

GC,sp. Adding cells to the spongy cylinder facilitates H2O diffusion by adding more wet

cell walls closer to the stomata, and obstructs and contorts the CO2 diffusion to the palisade

layer. We assumed that on average, adding spongy cells shortened the H2O diffusion

path by a factor of fias and lengthened the CO2 diffusion path by a factor of 1/ fias. This

assumption holds true for randomly distributed spongy cells.

2.3.2.4 Empirical equations for spongy and boundary layer
conductances

Running the model to reach steady-state for boundary and spongy layer diffusion was

time-consuming, limiting the model’s utility. Thus, we summarized the modeled boundary

and spongy layer conductances in analytically tractable solutions. We ran the finite mesh

model described above to make 1000 estimates of the GH,bd, G∅
H,sp, and G∅

C,sp by varying

the Rbd = Rsp from 16.11 to 141.04 µm in 10 steps, and Lbd and Lsp from 21.50 to 435.00 µm

in 10 steps. At each given Rbd = Rsp, maximal stomatal pore radius Rst,max was computed

by assuming stomatal pores occupy 2.5% leaf area, and Rst was ranged from 0.3Rst,max

to Rst,max in 10 steps. The minimal and maximal values for the anatomical traits were

based on observations from a literature survey of 384 observations from 293 hypostomatous

broad-leaf species (Ashton & Berlyn, 1992, 1994; Buckley et al., 2017; Earles et al., 2018;

Franks & Beerling, 2009; Wylie, 1951, 1954).

The GH,bd, G∅
H,sp, and G∅

C,sp were all predictable from three key parameters: Rst, Rbd

(equals Rsp), and Lbd or Lsp. The 1000 modeled conductances were each fitted with the

following empirical relationships:
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GH,bd = Rkst,bd·ln(Rbd)+kst,l·Lbd+lst
st · Rkbd,st·ln(Rst)+kbd,l·Lbd+lbd

bd · e(kl,st·ln(Rst)+kl,bd·ln(Rbd))·Lbd+ll , (2.7)

GH,sp =
1

fias
· Rkst,sp·ln(Rsp)+kst,l·Lsp+lst

st · Rksp,st·ln(Rst)+ksp,l·Lsp+lsp
sp · e(kl,st·ln(Rst)+kl,sp·ln(Rsp))·Lsp+ll ,

(2.8)

GC,sp = fias · R
kst,sp·ln(Rsp)+kst,l·Lsp+lst
st · Rksp,st·ln(Rst)+ksp,l·Lsp+lsp

sp · e(kl,st·ln(Rst)+kl,sp·ln(Rsp))·Lsp+ll ,

(2.9)

where e is the natural logarithm base, and k and l with subscripts are fitting parameters

(Table 2.2). With the analytical solutions for boundary layer, stomatal pore, and spongy layer

conductances (equations 2.5–2.9), GSW was solved using 1/GSW = 1/GH,bd + 1/GH,st +

1/GH,sp, GSC was computed using GSC = GSW/1.6, and GTC was solved using 1/GTC =

1/GC,bd + 1/GC,st + 1/GC,sp. The Gias was then computed from equation 2.2.

2.3.3 Sensitivity analysis

A sensitivity analysis was used to determine Gias and its importance relative to GSC

(GSC/Gias) as a function of major model inputs. Inputs were tested one at a time, varying

over the observed anatomical range (Table 2.1) while holding all other parameters constant

at default settings fixed at mean anatomical values. To estimate Gias for an average

hypostomatous species, species-specific parameters were fixed at default settings (mean

Rst,max, Rbd, Rsp, Lsp, Lst, fias), and stomatal aperture alone was varied (via Rst) at the

default Lbd. The mean species-specific traits were the following: Rst,max = 6.35 µm (N = 274),

Rbd = Rsp = 38.89 µm (N = 295, stomatal frequency = 327.68 mm−2), Lsp = 123.43 µm (N =

104), Lst = 14.06 µm (N= 97), and fias = 0.38 (N = 21). To test how anatomical traits impact

the correlation between GSC/Gias and GSW, we varied each of Lsp, Lst, Rsp (a measure of

stomatal frequency), and fias across the test range while holding other traits at their default

values. We also tested the range of Gias limitation in 14 species for which all traits except

stomatal frequency (the Rsp setting) had been reported (Buckley et al., 2017); the Rsp for the

14 species was set to the mean value from the anatomical literature survey.

2.3.4 Implications for mesophyll conductance

Responses of GM to the environment or experimental manipulations are generally

assumed to result from changes in Gliq rather than in Gias, although direct evidence is
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usually lacking. We surveyed the literature on how GM responds to different stimuli from

gene and cell levels to tree and ecosystem levels (Table 2.3), and we used our model to

estimate the Gias component of the GM response. We chose the studies that reported both

GM and GSW (labeled with “*” in Table 2.3). From the reported GSW, we calculated the Gias

based on average leaf anatomy (Table 2.1) because the actual anatomy of the species in

question was generally not reported. The Gias and the reported GM allowed us to estimate

Gliq using the equation for conductances in series: 1/GM = 1/Gias + 1/Gliq. We computed

the fractional gas-phase limitation of GM as GM/Gias, which is the portion of the total

mesophyll diffusive resistance (1/GM) that is accounted for by the intercellular gas-phase

resistance (1/Gias).

2.4 Results
2.4.1 Empirical calculation of spongy and boundary layer

conductances

The empirical equations used to summarize the 3D model (equations 2.7–2.9, Table 2.2)

performed well in fitting the modeled conductances for the cylindrical components: GH,bd

(y = 1.013x – 0.018, R2 = 0.992, Fig. 2.2a), G∅
H,sp (y = 1.003x – 0.006, R2 = 0.994, Fig. 2.2b),

and G∅
C,sp (y = 1.013x – 0.011, R2 = 0.992, Fig. 2.2c). These equations can be used to rapidly

estimate Gias from a few parameters. For example, a leaf with an effective leaf width of 5.0

cm in a wind speed of 4.0 m s−1 (Lbd = 447 µm), Rbd = 56.4 µm (= stomatal frequency of 100

mm−2), Lst = 20 µm, Rst = 8 µm, Lsp = 100 µm, Rsp = Rbd = 56.4 µm, and fias = 0.4 would

have Gias = 0.568 mol m−2 s−1 (GSC/Gias = 0.374).

2.4.2 Sensitivity analysis

The GSC/Gias ratio indicates how limiting the intercellular airspace is to CO2 uptake,

rising from zero as Gias becomes increasingly important relative to the stomatal GSC

component (a ratio of 0 indicates no limitation from Gias and a ratio of 1 indicates equal

limitation as GSC ). Bigger stomatal pores (higher Rst) and higher stomatal frequency

(lower Rsp) both increased the intercellular limitation because the GSC component increased

faster than Gias (Fig. 2.3a). A smaller volume fraction of intercellular airspace (higher

cellular density and lower fias) increased the intercellular limitation because GSC increased

(equation 2.8b) while Gias decreased (Fig. 2.3b). A thicker spongy mesophyll layer (larger
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Lsp) also increased the intercellular limitation, chiefly by lowering Gias (Fig. 2.3b). A thinner

boundary layer (smaller Lbd) or thinner epidermis (smaller Lst) did not impact the Gias but

increased the intercellular limitation via increasing GSC.

When parameters were fixed at mean values for the average hypostomatous leaf (Table

2.1), the GSC/Gias was influenced only by changes in stomatal aperture as simulated by

allowing only Rstto vary. The GSC/Gias limitation increased roughly as a power function of

GSW (thick solid curve in Fig. 2.4a–e) with a scaling exponent of 0.30. This scaling exponent

was not strongly dependent on leaf anatomical traits, ranging in 0.30–0.37, 0.25–0.33, 0.27–

0.35, and 0.29–0.39 while varying each of Lsp, Lst, Rsp, and fias in its test range, respectively.

The average exponent was 0.32, 0.31, 0.32, and 0.32 for each variable in the sensitivity

analysis.

A similar scaling was observed across the 14 species with different reported trait

combinations. For 13 species, the exponent averaged 0.30 and ranged from 0.27 to 0.35. One

species was an outlier at 0.41, which resulted from a thick spongy layer of 236.4 µm and

high fias of 0.60 (Fig. 2.4). The overall average scaling exponent across all 14 species (0.31)

was not different from the 0.30 exponent obtained for the average hypostomatous leaf (P =

0.23).

2.4.3 Implications for mesophyll conductance

From the literature survey, GM (black symbols in Fig. 2.5a) increased with stomatal

conductance (slope = 0.58, P < 0.001), as did the corresponding Gias calculated from

our diffusion model assuming an average hypostomatous leaf (Fig. 2.5a, red symbols).

The residual Gliq (computed from GM and Gias) showed no correlation with stomatal

conductance (Fig. 2.5a, blue symbols; slope = 2.29, P = 0.343). The gas-phase Gias limitation

on mesophyll conductance, (i.e., GM/Gias), ranged from 0 (no Gias influence) to 1 (no Gliq

influence) with an average of 0.59 (N = 326, Fig. 2.5b, red symbols). The GM/Gias increased

with stomatal conductance, GSW, across the dataset (Fig. 2.5b, slope = 0.18, P = 0.002). In

some cases (not shown in Fig. 2.5b) the calculated Gias was less than GM (58 out of 384

observations), which is physically impossible and may result from calculating Gias from

average leaf anatomy rather than the actual anatomy of the species in question.
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2.5 Discussion
2.5.1 Can Gias be neglected?

Gas exchange models have tended to neglect the Gias due to the lack of (a) easy ways to

estimate Gias from simple gas exchange measurements, (b) mechanistic understanding of

how Gias varies with the environmental cues, and (c) understanding of the consequences of

neglecting variable Gias. We filled these knowledge gaps by modeling the 3D gas diffusion

of H2O and CO2, and summarizing the 3D model using empirical equations for analytically

computing Gias (and the GSC/Gias ratio) from readily measurable traits. Compared with

previous 3D diffusion models, we also included a boundary layer component, which

allowed us to link Gias to stomatal conductance. We evaluated how Gias and GSC/Gias

varied with leaf anatomical traits, and found the intercellular limitation scales with stomatal

conductance for a given leaf anatomy. Given that Gias can now be easily estimated, and that

Gias varies with stomatal closure, it may be less justifiable to neglect the Gias or treat Gias as

a constant in future gas exchange modeling studies.

Despite these mechanistic improvements, our model includes some necessary

simplifications. Specifically, we assume a single value for saturated vapor pressure as

is typically done when measuring GSW (equation 2.4). This in turn assumes an isothermal

mesophyll with equal cell wall water potential. The magnitude of spatial gradients in

temperature and water potential within the leaf mesophyll have not been directly measured.

Significant temperature and water potential gradients would complicate the estimation and

interpretation of GSW, GSC, and related diffusive conductances including Gias (Buckley et

al., 2015; Mott & Peak, 2011; Rockwell & Holbrook, 2017; Tyree & Yianoulis, 1980; Yianoulis

& Tyree, 1984). Better experimental resolution of tissue-scale gradients in water potential

and temperature is needed to determine the importance in understanding all aspects of

leaf-level gas exchange.

Another simplification we make is that palisade is the sole sink for CO2 for typical

hypostomatous leaf. This assumption holds true for most hypostomatous species as a result

of high CO2 sink strength in the palisade (Smith et al., 1997). However, for an atypical

hypostomatous leaf where significant amount of CO2 is absorbed by the spongy mesophyll,

the intercellular limitation ought to decrease because CO2 diffusion path is shortened (as if

the spongy layer was thinner in our representation). Similarly, the amphistomatous leaf may



17

have a lower Gias limitation as each leaf side can be treated as an atypical hypostomatous

leaf. Variation in leaf anatomy, however, does not alter the result that Gias will decrease

with stomatal closure for a given leaf.

2.5.2 Gias and stomatal conductance

Our 3D model indicated that Gias scales with GSW (Fig. 2.4), supporting and simplifying

Parkhurst’s and Aalto’s model result that the intercellular limitation depends on stomatal

aperture (Aalto & Juurola, 2002; Aalto et al., 1999; Parkhurst, 1984, 1994). The simplified

correlation makes it possible to incorporate mesophyll conductance limitation in higher

level models (e.g., land surface models). According to our model (Fig. 2.4),

Gias = G0 · Gpow
SW , (2.10)

whereG0 is the Gias when GSW = 1.0 mol m−2 s−1, and pow is the scaling factor (pow ≈ 0.7

for the average hypostomatous leaf, consistent with Fig. 2.4). Our model differs from the

simple 1D gas-phase conductance calculated in many studies:

Gias =
DC · fias

Lsp · ζ
· Patm

RT
, (2.11)

where DC is the diffusion coefficient of CO2 in air (1/1.6 times that of H2O in air: DC =

D/1.6), ζ is the diffusion path tortuosity (Syvertsen et al., 1995; Terashima, 1995; Tosens

et al., 2012), and Patm/RT converts the unit from m s−1 to mol m−2 s−1. We account for

the intercellular air fraction differently from equation 2.11 (see equations 2.7–2.10). The

differences are (1) we use fias to correct the CO2 and H2O diffusion in the spongy layer

(GH,sp and GC,sp) separately, whereas equation 2.11 makes correction to the final product,

Gias; (2) we simulate the 3D diffusion from a tiny pore to a broad flat surface (palisade),

whereas equation 2.11 treats the diffusion as 1D plane diffusion from leaf surface to the

palisade.

Though equation 2.11 provides a qualitative understanding of how Gias varies with fias

and Lsp, this formulation does not allow conductance to change with the stomatal aperture

or frequency as the present 3D model indicates (Fig. 2.3, 2.4). As a result, the Gias calculated

from equation 2.11 cannot capture the variable Gias caused by changes in stomatal aperture

and is much higher than using equation 2.10 (Fig. 2.5a, red horizontal line). Thus, the
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intercellular resistance partition (i.e., GM/Gias) computed from the 1D equation estimates a

Gias resistance partition of less than 0.4 (gray “×” in Fig. 2.5b) compared to the average of

0.59 based on our 3D diffusion model and an average hypostomatous leaf (red “+” in Fig.

2.5b). Although Gias is sensitive to leaf anatomy (Fig. 2.4), for a given leaf the 3D Gias will

always be lower than the 1D Gias and scale with stomatal aperture.

The reason why Gias declines with stomatal aperture involves the geometry of the 3D

diffusion front as defined by contours in CO2 concentration (Fig. 2.6). As defined by

equations 2.1–2.3, the fact that Gias declines with stomatal aperture means that the total

gas-phase resistance to CO2, RTC, increases more with stomatal closure than the stomatal

resistance, RSC. The stomatal component is based on water vapor diffusion in reverse (GSC

= GSW/1.6), and in this case the diffusion front quickly grows from the narrow confines

of the stomatal aperture into a spherical shape of increasing surface area (Fig. 2.6a). The

spherical geometry dampens the impact of a narrower aperture on the overall increase

in diffusive resistance, RSC. In the case of total gas-phase diffusion, however, the initial

spherical expansion from the stomatal pore dissipates to a planer diffusion geometry as

CO2 moves to the distant sink at the palisade boundary (Fig. 2.6b). The limited expansion

of the diffusion front increases the impact of a narrower stomatal aperture on the overall

increase of resistance, RTC. The result is that RTC increases more for a given reduction

in stomatal aperture than RSC (Fig. 2.6, RSC increases by 8.84 m2 s mol−1 CO2, RTC rises

by 9.01 m2 s mol−1 CO2, and Rias rises by 0.17 m2 s mol−1 CO2, for a given reduction in

stomatal aperture). In terms of conductances, the Gias declines as stomata close.

2.5.3 Gias and mesophyll conductance

Despite considerable effort to document and explain variation in mesophyll conductance

(Flexas et al., 2012, 2018, 2008, also Table 2.3), a mechanistic understanding is still elusive.

Our literature survey showed that the GM response to the environment within an individual,

and GM variation across individuals (within and across species), was usually accompanied

by a similar trend in GSW (Fig. 2.5a; Table 2.3). Our model indicated that the gas-phase

portion of GM (i.e., Gias) also scales with GSW and that the Gias is low enough to significantly

limit GM (accounting for an average of 59% of the mesophyll diffusive resistance). The

covariation of Gias and GSW predicted by our model provides a potential explanation for
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why GM varies with GSW regardless of whether the underlying stimulus involved changes in

gene expression, chemical treatment, differences in leaf traits and species, or environmental

cues (Table 2.3). Although we did not directly model the liquid-phase component of GM

(i.e., Gliq), we found no evidence that it scaled with GSW (Fig. 2.5). However, Gias cannot be

the only driver for GM variation because Gias alone cannot explain those situations where

GM responded independently of GSW (Table 2.3), as in the case of stimulation by ABA (Vrábl

et al., 2009), blue light (Loreto et al., 2009), and temperature (Evans & von Caemmerer, 2013;

Scafaro et al., 2011; von Caemmerer & Evans, 2015). Therefore, a mechanistic understanding

of Gliq is also important, though it may be challenging to isolate from what we predict to be

a dynamic and limiting Gias component.

The observation of reduced GM during drought is often interpreted as evidence for a

“non-stomatal limitation” to photosynthesis (Dewar et al., 2018; Drake et al., 2017; Zhou et

al., 2013, 2014), caused by lowered photosynthetic capacity and liquid-phase mesophyll

conductance. However, the magnitude of the “non-stomatal” limitation needs to be carefully

examined by isolating Gliq from the dynamics of Gias as stomatal aperture changes. Though

it remains unclear how Gliq changes with the environment, the correlation between GM

and GSW can be generally accounted for by the scaling between Gias and GSW. The total

gas-phase conductance to CO2, including GSC and Gias in series, can be readily calculated:

GTC =
GSW

1.6 · GSC

Gias

=
GSW

1.6 · con · Gpow
SW

, (2.12)

where con and pow are species-specific constants. Substituting GTC for GSC in gas exchange

models will help predict more accurate photosynthetic rates under drought.

2.5.4 Conclusion

The spatial difference between H2O evaporation source and gas-phase CO2 sink inside

the leaf results in a potentially limiting intercellular CO2 conductance, Gias, which is

experimentally difficult to quantify. We present a numerical 3D diffusion model to compute

Gias and summarize the mechanistic model using analytical equations to help account for

intercellular CO2 diffusion. We further simplify the Gias limitation within a species as a

power function of stomatal conductance to water vapor, GSW. The simplified analytical

solution for Gias advances the understanding and modeling of gas exchange inside the leaf
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by demonstrating the dependence of Gias on leaf anatomical traits and stomatal aperture.
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Table 2.2: Fitting parameters for equations 2.7–2.9 for boundary and spongy layer
conductances (symbols defined in Table 2.1 and equations 2.7–2.9).

GH,bd GH,sp GC,sp
kst,sp or kst,bd -1.915731 -14.226819 9.820652
kst,l 0.074672 0.014643 0.147947
lst 1.559147 1.899844 1.559149
ksp,st or kbd,st 1.833096 14.060909 -9.903288
ksp,l or kbd,l -0.200440 -0.111787 -0.263997
lbd or lsp -1.870286 -1.806674 -1.870287
kl,st -0.074407 -0.012719 -0.147682
kl,bd or kl,sp 0.202129 0.112050 0.265686
ld -0.010803 -0.007752 -0.010803
ll 6.360923 6.417760 6.360925



31

Table 2.3: Literature survey of whether GM and GSW change in the same direction in
response to manipulations of an independent variable at levels from the gene to the
environment. Of the 62 studies cited, 57 reported a positive correlation between GM
and GSW, whereas five did not support the covariation. Asterisked references were sources
of the GM and GSW data plotted in Fig. 2.5.

Level
Independent
variable

GM and GSW change
Referencein same direction

Yes No
Gene NtDAQ1 X (Flexas et al., 2006)*

X (Sade et al., 2014)
Ictb X (Gong et al., 2015)
FBP/Sbpase X (Gong et al., 2015)
Atquac1 X (Medeiros et al., 2016)
OsPIP X (Ding et al., 2016)

Cell HgCl2 X (Miyazawa et al., 2008)
Acetazolamide X (Momayyezi & Guy, 2017)
Abscisic acid X (Vrábl et al., 2009)*

X (Mizokami et al., 2015)
X (Sorrentino et al., 2016)

Leaf Age X (Flexas, Ortuño, et al., 2007)*
X (Barbour et al., 2016)

Geometry X (Kodama et al., 2011)*
Hydraulics X (Xiong et al., 2018)
GSW X (Bickford et al., 2010)*

X (Ferrio et al., 2012)*
X (Rancourt et al., 2015)
X (Barbour & Kaiser, 2016)
X (J.-M. Han et al., 2016)
X (Tomeo & Rosenthal, 2017)
X (Stangl et al., 2019)

Height X (Q. Han, 2011)*
Air Vapor

pressure
deficit

X (Perez-Martin et al., 2009)*

Heat Pulse X (Galle et al., 2013)
[CO2] X (Loreto et al., 1992)*

X (Flexas, Diaz-Espejo, et al., 2007)*
X (Hassiotou et al., 2009)*
X (Tazoe et al., 2009)*
X (Vrábl et al., 2009)*
X (Douthe et al., 2011)*
X (Schaeufele et al., 2011)
X (Tazoe et al., 2011)*
X (Gilbert et al., 2011)
X (Galle et al., 2013)
X (Martins et al., 2013)
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Table 2.3: continued

Level
Independent
variable

GM and GSW change
Referencein same direction

Yes No
X (Xiong et al., 2015)
X (Olsovska et al., 2016)

Light X (Piel et al., 2002)*
X (Hassiotou et al., 2009)*
X (Tazoe et al., 2009)*
X (Bickford et al., 2010)*
X (Cano et al., 2013)
X (Pallozzi et al., 2013)
X (Xiong et al., 2015)
X (Campany et al., 2016)
X (Xiong et al., 2018)

Blue light X (Loreto et al., 2009)*
X (Pallozzi et al., 2013)

Temperature X (Scafaro et al., 2011)
X (Evans & von Caemmerer, 2013)
X (von Caemmerer & Evans, 2015)

X (Xiong et al., 2015)
Soil Drought X (Lauteri et al., 1997)*

X (Delfine et al., 1999)*
X (Galle et al., 2009)*
X (Perez-Martin et al., 2009)
X (Hu et al., 2010)*
X (Brilli et al., 2013)
X (Cano et al., 2014)
X (Perez-Martin et al., 2014)
X (Mizokami et al., 2015)
X (Rancourt et al., 2015)
X (Barbour et al., 2016)
X (J.-M. Han et al., 2016)
X (Olsovska et al., 2016)
X (Ouyang et al., 2017)

Salt Stress X (Delfine et al., 1998)*
X (Delfine et al., 1999)*

Nitrogen X (Xiong et al., 2015)
Potassium X (Jin et al., 2011)*

X (Lu et al., 2016)
Zinc X (Sagardoy et al., 2010)*
Nickel X (Velikova et al., 2011)*

Tree Genotype X (Barbour et al., 2010)*
X (Tomás et al., 2014)
X (Xiong et al., 2017)

Species X (Gillon & Yakir, 2000)*
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Table 2.3: continued

Level
Independent
variable

GM and GSW change
Referencein same direction

Yes No
X (De Lucia et al., 2003)*
X (Peguero-Pina et al., 2017)

Ecosystem Latitude X (Momayyezi & Guy, 2017)
Summary 57 5
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Figure 2.1: The leaf diffusion model. (a) Gas diffusion was divided in a series of three
cylindrical units: boundary layer, stomatal pore, and spongy mesophyll (not drawn to scale).
(b) In the boundary layer, H2O diffuses from the stomatal pore opening to the atmospheric
boundary as labeled with arrows, and CO2 diffuses in the reverse direction. (c) In the
stomatal pore, CO2 and H2O diffuse in plane diffusion in opposite directions. (d) In the
spongy layer, H2O diffuses from all internal surfaces as labeled with black to the stomatal
pore as labeled with arrows, whereas CO2 diffuses from the stomatal pore opening to the
palisade boundary as labeled with dark gray.
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Figure 2.2: Comparison of numerically modeled and empirically fitted diffusive
conductance. The y-axis plots the diffusive conductance obtained from the 3D numerical
model simulation and the x-axis plots those fitted by the empirical functions in equation
3. Solid black in each panel indicates the 1:1 line. (a) Boundary layer conductance to
H2O (GH,bd, mol m−2 s−1). (b) Spongy layer conductance to H2O (G∅

H,sp, mol m−2 s−1). (c)
Spongy layer conductance to CO2 (G∅

C,sp, mol m−2 s−1).
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Figure 2.3: Sensitivity of GSC/Gias (labeled contours) to leaf anatomy. Indicated traits were
varied over the reported range while holding other parameters constant at default (mean)
values (Table 2.1). (a) Sensitivity to stomatal pore radius (Rst) and spongy layer radius (Rsp).
White space below dotted line indicates limit to stomatal opening. (b) Sensitivity to spongy
layer air fraction ( fias) and spongy layer thickness (Lsp).
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Figure 2.4: The GSC/Gias associated with stomatal closure in the C3 hypostomatous leaf. For
each curve in (a)–(e), diffusive conductance to water vapor (GSW) was altered by altering
stomatal pore area (via reducing Rst from maximal Rst,max) with other parameters constant.
Solid curve is for the average hypostomatous leaf. (a) Gray curves plot the GSC/Gias versus
GSW at different spongy layer thickness (Lsp). The 10 gray curves from bottom to top
are for increasing Lsp across its test range (evenly partitioned, same for (b)–(d)). (b) The
GSC/Gias versus GSW at different stomatal pore depth (Lst); curves from top to bottom are
for increasing Lst across its test range. (c) The GSC/Gias versus GSW at different spongy
cylinder radius (Rsp); curves from top to bottom are for decreasing Rsp (increasing stomatal
frequency). (d) The GSC/Gias versus GSW at different intercellular air fraction ( fias); curves
from top to bottom are for increasing fias. (e) The GSC/Gias versus GSW for different species,
one gray curve per species. (f) Box plot of the scaling exponents for the gray curves in
(a)–(e), with the horizontal line indicating the exponent (0.30) of the average leaf.
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Figure 2.5: Partitioning mesophyll conductance to CO2 (GM; values from asterisked sources
in Table 2.3) into gas-phase intercellular conductance (Gias) and liquid-phase intracellular
conductance (Gliq) as a function of stomatal diffusive conductance to water vapor (GSW). (a)
The Gias (red “+”) was estimated from GSW with our 3D diffusion model for average
hypostomatous leaf, and the residual of GM (black “+”) and Gias was Gliq (blue “+”).
The light red line represents the Gias computed from the 1D diffusion equation 2.11. (b)
The GM/Gias, which indicates the fraction of total diffusive mesophyll resistance (1/GM)
attributable to the intercellular gas diffusion. Red “+” with the solid regression line (P =
0.002) plot our 3D diffusion model, and gray “×” are based on equation 2.11.
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Figure 2.6: Geometry of the diffusion gradient as stomata adjust from wide open (left,
Rst = 6.26 µm) to partially closed (right, Rst = 3.13 µm) for the average hypostomatous
leaf (Table 2.1). The x axis represents the diameter and y axis plots the thickness of the
spongy mesophyll cylinder. The stomatal pore is at the center of the bottom axis, and
the palisade boundary is the top axis. Gray curves from top to bottom represent partial
pressure contours of CO2 at 0.5%, 1%, 2%, 3.5%, 5%, 10%, 20%, and 40% of the total
pressure difference from the palisade to the stomatal pore. (a) The spherical geometry of
stomatal diffusive conductance to CO2 (GSC), which is based on the diffusion of water vapor
from internal wet surfaces. The reduction in stomatal aperture caused the resistance to
stomatal diffusion to CO2 (RSC = 1/GSC) to increase by ∆R = 8.84 m2 s mol−1 CO2. (b) The
spherical-to-planar geometry of total gas-phase diffusive conductance to CO2 (GTC), which
is based on CO2 diffusion to the palisade. The reduction in stomatal aperture caused the
total resistance to CO2 diffusion (RTC = 1/GTC) to increase by ∆R = 9.01 m2 s mol−1 CO2,
a greater increase than for RSC. Note here that ∆R comprises increasing resistances in all
the boundary layer, stomatal pore, and spongy mesophyll. The intercellular resistance (Rias
= 1/Gias) is the difference between RTC and RSC (equation 2.3), and it increases by 0.17
m2 s mol−1 CO2 with stomatal closure.
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2.7 Supporting Information
2.7.1 Derivation of equation 2.5

Diffusive conductance to water vapor is defined as the molar diffusion rate per leaf area

per second. According to the Fick’s First Law, the plane diffusion rate per plane area (J in

mol m−2 s−1) is proportional to the concentration gradient, that is,

J = D · ∆C
∆L

, (2.13)

where D is the diffusion coefficient of water vapor in air (m2 s−1), ∆C is the concentration

difference (mol m−3), and ∆L is the distance between the source and sink planes (m). The

total diffusion rate of the stomatal pore per leaf area Jst is

Jst = D · ∆C
∆L
· πR2

st

πR2
bd

, (2.14)

where Rst is the stomatal pore radius and Rbd is the boundary layer cylinder radius.

According to the Ideal Gas Law, ∆C can be computed from

∆C =
∆P
RT

, (2.15)

where ∆P is the vapor pressure drop along the stomatal pore cylinder, R is the gas constant

and T is the Kelvin temperature. The stomatal pore conductance is

GH,st =
Jst

µw
, (2.16)

where µw is the vapor pressure fraction difference along the stomatal pore: µw = ∆P/Patm

(Patm is the atmospheric pressure).

Combining equations 2.13–2.16, the stomatal pore conductance is

GH,st = D · Patm

RT
· 1

Lst
· R2

st

R2
bd

(2.17)

where Lst is the length of stomatal pore cylinder (namely the abaxial epidermis thickness).
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2.7.2 Sensitivity analyses of Gias limitation
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Figure 2.S1: Sensitivity analyses of GSC (blue lines in column 1 and 3), GTC (green lines
in column 1 and 3), Gias (black lines in column 1 and 3), and GSC/Gias (black lines in
column 2 and 4) versus Rst, Rsp, Lst, Lsp, Lbd, and fias. The units for GSC, GTC, and Gias are
mol m−2 s−1. The analyses were done by varying each of Rst, Rsp, Lst, Lsp, Lbd, and fias in
the test range while holding the rest parameters at default value (Table 2.1 in the main text).
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2.7.3 Leaf diffusive conductances versus stomatal pore aperture

0 1 2 3 4 5
Rst ( m)

0

1

2

3

4

5

Di
ffu

siv
e 

co
nd

uc
ta

nc
e 

(m
ol

m
2

s
1 )

GH, st
GH, bd
GH, sp

1.6×GC, sp

GSW
1.6×GTC

Figure 2.S2: Leaf diffusive conductances scale with stomatal pore aperture. In the
simulation, leaf anatomical traits are set to default values (Table 2.1) and the stomatal
pore radius (Rst) ranges from 0 to 5 µm. The diffusive conductance symbols (GH,st, GH,bd,
GH,sp, GC,sp, GSW, and GTC) are defined in Table 2.1. The GC,sp, and GTC are converted to
equivalent conductance for H2O by multiplying a molar conversion factor 1.6 to scale with
the GH,st, GH,bd, GH,sp, and GSW (mol m−2 s−1).



CHAPTER 3

A THEORETICAL AND EMPIRICAL ASSESSMENT OF

STOMATAL OPTIMIZATION MODELING

3.1 Summary
Optimal stomatal control models have shown great potential in predicting stomatal

behavior and improving carbon cycle modeling. Basic stomatal optimality theory posits that

stomatal regulation maximizes the carbon gain relative to a penalty of stomatal opening. All

models take a similar approach to calculate instantaneous carbon gain from stomatal

opening (the gain function). Where the models diverge is in how they calculate the

corresponding penalty (the penalty function). In this review, we compare and evaluate nine

different optimization models in how they quantify the penalty and how well they predict

stomatal responses to the environment. We propose that the penalty function must meet

seven basic criteria to produce a unique and realistic solution. We evaluate whether the

models meet these criteria and further test them against multiple leaf gas exchange datasets.

The optimization models with better predictive skills have penalty functions that meet our

seven criteria and fitting parameters that are both few in number and physiology-based.

The best performing models are those with a penalty function based on stress-induced

hydraulic failure. We propose a new model that has a hydraulics-based penalty function

which meets all seven criteria and demonstrates a highly predictive skill against our test

datasets.

•Keywords: carbon gain, carbon penalty, gas exchange, hydraulics, optimization model,

stomatal control, trade-off

3.2 Introduction
Trees balance CO2 uptake and water loss by regulating the aperture of tiny pores in

the leaf epidermis called stomata. The benefit of opening the stomata is CO2 uptake that

fuels photosynthesis. The fact that stomata often restrict photosynthesis by failing to open
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maximally suggests there is also an inherent and unavoidable disadvantage or “penalty”

for stomatal opening in certain environmental conditions. Penalties are numerous and

can include consequences of transpiration such as running out of soil water, suffering

excess xylem cavitation due to negative xylem pressure, and experiencing stress-induced

non-stomatal limitation to photosynthesis (NSL; Dewar et al., 2018; Flexas et al., 2012). Basic

optimization theory suggests that stomatal regulation ought to maximize the difference

between the carbon gain and the penalty. While the carbon gain from stomatal opening

is easily quantified, a fundamental challenge for optimization models is quantifying the

penalty from potentially diverse sources and mechanisms over a range of timescales, and

expressing it on equal terms with instantaneous photosynthesis.

The evolution of stomatal regulation presumably involves coordinated adjustments in

almost all aspects of plant performance. Attempting to quantify the penalty from all such

sources is, however, not realistic because (1) the suite of chosen physiological processes

will likely be incomplete, (2) not all processes can be quantitatively represented due to

insufficient mechanistic understanding, (3) parameterization would be extremely difficult,

and (4) it would be computationally expensive to run such a multidimensional optimization

model at the tree-level or beyond (Chen et al., 2012; Hills et al., 2012). Instead, optimization

models have typically focused on a single candidate penalty as an implicit proxy for what,

in reality, must be much more complex. From this practical standpoint, a successful penalty

function is an algorithm that is readily parameterized from measurable physiological data or

functional traits, and works in reproducing stomatal responses to changing environmental

conditions.

Over the years, many such optimization models have been proposed, differing mainly

in what process they choose to represent as the penalty of water use. Many of these are

elaborations of the original Cowan & Farquhar (1977) assumption that a plant ought to

maximize the cumulative photosynthesis while using a given amount of water in a given

time (Buckley et al., 2017; Buckley & Schymanski, 2014; Katul et al., 2010, 2009; Manzoni et

al., 2013; Medlyn et al., 2011). The original Cowan-Farquhar framework links the penalty to

running out of water, but does not explicitly consider stress-induced damage to the vascular

system or NSL. Other models use different penalty criteria, often explicitly incorporating

the risk of vascular damage (Anderegg et al., 2018; Eller et al., 2018; Sperry et al., 2017; Wolf
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et al., 2016) and/or NSL (Dewar et al., 2018; Hölttä et al., 2017).

In this review, we examine and compare several optimization formulations concerning

their ability to predict stomatal behavior and analyze what makes some models more

successful than others. We first develop seven fundamental criteria for how the penalty

function must behave mathematically to predict the widely observed stomatal responses to

environmental cues. Second, we review nine optimization models that captures diverse set

of penalty function, and compare them against our seven fundamental criteria. Third, we

test how the models perform against several datasets. Finally, to illustrate how our results

can help further develop optimization models, we present and evaluate a new model that

meets all seven criteria.

3.3 A Generic Optimization Equation
In our framing of basic optimization theory, stomatal opening (x) is optimized when

the instantaneous A − Θ is maximized, where A is the current net photosynthetic rate,

and Θ is the penalty (both in µmol CO2 s−1 m−2 leaf area; list of symbols and units in

Table 3.1). This optimization is obtained when the marginal photosynthetic gain (dA/dx)

equals the marginal penalty (dΘ/dx). The measure of stomatal opening, x, can be stomatal

conductance for H2O , transpiration rate (Eleaf), or leaf xylem pressure (P); we use x = Eleaf

in this review because the marginal gain (dA/dE) represents marginal water use efficiency.

Thus, we have

max(A−Θ) ≡ dA
dE

=
dΘ
dE

, (3.1)

To facilitate model comparison, we express all nine models in terms of equation 3.1. Most

models interpret Θ as a “shadow cost” or “risk” to future plant performance, which leaves

the current instantaneous A unchanged. The exception are models that assume the penalty

is from NSL. In these models, Θ (distinguished as Θ′, herein) represents the downregulation

in instantaneous photosynthesis from its nonstressed, well-watered rate (distinguished

as Aww), and the difference is the actual instantaneous A (A = Aww −Θ′; these models

maximize Aww −Θ′). We use A and Θ by default in this review except for the NSL models,

where we use Aww and Θ′ instead.
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3.3.1 The carbon gain calculation, A

All models are in basic agreement in using established photosynthesis models for

calculating the instantaneous A from stomatal opening, photosynthetic capacity (Vcmax

and Jmax, where Vcmax is the maximal carboxylation rate and Jmax is the maximal electron

transport), and environmental conditions (including solar radiation, atmospheric vapor

pressure deficit (VPD), atmospheric [CO2] (Ca), and air temperature). In this review, we use

the Farquhar et al. (1980) model to compute A, but add a correction for finite mesophyll

conductance (GM). With stomatal closure, GM decreases, and this reduces A more than

if GM is ignored (Flexas et al., 2012). We highlight and include the mesophyll limitation

to photosynthesis because the correction for GM limitation improves the accuracy of A

and dA/dE. Due to the elusive mechanistic understanding of how GM responds to the

environment, however, we assume the liquid-phase component of GM is constant, and the

gas-phase component scales with stomatal conductance as shown elsewhere (Chapter 2;

Wang et al., in review). Hence, in our treatment, the decline in GM under stress is part of

the stomatal limitation on A rather than an independent NSL as is often hypothesized. Any

other causes of a true NSL (e.g., a stress-induced decline in photosynthetic capacity) are

quantified in the penalty function (i.e., as Θ′) in this framework.

For any constant set of environmental conditions, as Eleaf increases, the A increases, and

dA/dE decreases (Fig. 3.1). Different conditions, however, influence the absolute value of

A at a given Eleaf. Higher VPD decreases A, and higher Ca increases A (Fig. 3.1, “+VPD”

and “+Ca”). Soil drought has no effect on A or dA/dE as a function of Eleaf, except to limit

the physiological range of Eleaf. This assumes that any true NSL is expressed in the penalty

function (as Θ′).

3.3.2 Seven criteria for a successful penalty calculation, Θ

Each of the nine models evaluated differs in how the carbon penalty, Θ, is calculated as

a function of Eleaf (see Section 3.4). Here we define seven criteria for a mathematically

and biologically successful Θ(Eleaf) function. The first three criteria are based on the

mathematical demand for a unique solution for dA/dE = dΘ/dE as defined by equation

3.1. The final four criteria are required to obtain biologically realistic stomatal responses to

major environmental cues.
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I. The dΘ/dE > 0 when Eleaf > 0. Opening the stomata must result in a positive

penalty and marginal penalty to the plant, because A and dA/dE is similarly

positive.

II. The dΘ/dE is a monotonically increasing function of Eleaf. This ensures a single

intersection with the monotonic decline in dA/dE (Fig. 3.1). This necessarily requires

that Θ is a concave-up function of Eleaf (Wolf et al., 2016).

III. The dΘ/dE < dA/dE when Eleaf = 0. Criteria I and II ensure that dΘ/dE is

positive and monotonically increases with Eleaf. Criterion III ensures that dΘ/dE

starts out below dA/dE to ensure the two functions intersect. Note that the initial

dA/dE at Eleaf = 0 is
Ca − Γ

1.6 · D , where Γ is the CO2 compensation point with the

presence of dark respiration, D is the leaf-to-air vapor pressure deficit relative to

atmospheric pressure, and 1.6 is the molar conversion factor for diffusive coefficient

of H2O to CO2 in air (derivation in 3.8.1). Thus, criterion III is equivalent to
dΘ
dE

<

Ca − Γ

1.6 · D at Eleaf = 0.

IV. The dΘ/dE is a monotonically decreasing function of VPD for a given Eleaf. This

criterion is required to capture the typical stomatal closure response to rising VPD

(holding other conditions constant), which causes Eleaf to either saturate or rise

slowly (Ball et al., 1987; Leuning, 1995). Rising VPD typically causes dA/dE to

decrease (when Eleaf < 1.7 mmol H2O m−2 s−1 in Fig. 3.2a, shift of green dA/dE

curves from dotted to solid). Therefore, to obtain a realistic stomatal response to

VPD where Eleaf is saturated or increasing (Fig. 3.2a, the thickened “solution” band

on the solid green dA/dE curve), the dΘ/dE must also decrease with VPD (Fig. 3.2a,

shift from red dotted dΘ/dE curve to the shaded red region).

V. The dΘ/dE is a monotonically increasing function of Ca for a given Eleaf. This

criterion is required to capture the typical stomatal closure response to rising Ca

(holding other conditions constant), which causes Eleaf to decrease and A to increase

(Ball et al., 1987; Medlyn et al., 2011). Rising Ca typically causes dA/dE to increase

(when Eleaf < 1.2 mmol H2O m−2 s−1 in Fig. 3.2b, shift of green dA/dE curves from

dotted to solid). Therefore, to obtain a realistic stomatal response to Ca where Eleaf

decreases and A increases (Fig. 3.2b, the thickened “solution” band on the solid

green dA/dE curve), the dΘ/dE must also increase with Ca (Fig. 3.2b, shift from red
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dotted dΘ/dE curve to the shaded red region).

VI. The dΘ/dE is a monotonically increasing function of soil drought for a given

Eleaf. This criterion is required to capture the typical stomatal closure response

to soil drought (holding other conditions constant), which causes Eleaf to decrease

(Venturas et al., 2018). Soil drought can be assumed to not affect dA/dE curve in the

absence of NSL (Fig. 3.2c, dotted green dA/dE curve). Therefore, to obtain a realistic

stomatal response to soil drought where Eleaf decreases (Fig. 3.2c, the thickened

“solution” band on the dotted green dA/dE curve), the dΘ/dE must increase with

soil drought (Fig. 3.2c, shift from red dotted dΘ/dE curve to the shaded red region).

VII. The dΘ/dE is a monotonically increasing function of prior loss of hydraulic

conductivity for a given Eleaf. This criterion is required to capture the typical

stomatal response to reduced plant hydraulic conductance from prior drought

(holding other conditions constant), which generally causes Eleaf to decrease

(Venturas et al., 2018; Yin & Bauerle, 2017). Loss of plant hydraulic conductance can

be assumed to not affect the dA/dE curve in the absence of NSL (Fig. 3.2c, dotted

green dA/dE curve). Therefore, to obtain a realistic stomatal response to reduced

hydraulic conductance where Eleaf decreases (Fig. 3.2c, thickened “solution” band on

the dotted green dA/dE curve), the dΘ/dE must increase with reduced hydraulic

conductance associated with more severe drought history (Fig. 3.2c, shift from red

dotted dΘ/dE curve to the shaded red region).

3.4 Nine Optimization Models
In this section, we analyze how nine representative optimal stomatal control models

define their penalty functions by setting a uniform gain function to all the models (i.e.,

gain is A, and marginal gain is dA/dE). We categorize the models by type of carbon

penalty based primarily on (a) water supply, (b) xylem transport, and (c) NSL. At the end of

this section, we compare each models’ performance against several datasets that include

stomatal responses to VPD, Ca, and soil drought.
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3.4.1 Models with a penalty based on water supply

3.4.1.1 The Cowan-Farquhar model (1977)

Pioneering gas exchange optimization theory, Cowan & Farquhar (1977) modeled the

penalty only in terms of optimal use of a finite soil water supply. The Cowan-Farquhar

model posits that a plant maximizes the cumulative photosynthesis for an unspecified given

amount of water (Etotal) within an unspecified given amount of time (ttotal):

max
(∫ ttotal

0
A · dt

)
while

∫ ttotal

0
Eleaf · dt = Etotal. (3.2)

The optimal solution for equation 3.2 requires that (1) the plant can roughly target the

optimal trajectory based on the climate of the given site as if the plant “knows” the

environmental conditions and Etotal in the given ttotal and (2) the plant can control water use

freely at any time instant. Any deviation from the optima results in a decline in cumulative

photosynthesis over the time period. The Cowan-Farquhar model solution is

dA
dE

=
1
λ

when Eleaf > 0, (3.3)

dA
dE

<
1
λ

when Eleaf = 0, (3.4)

where 1/λ is the optimal marginal water use efficiency, which is constant over the time

period. The Cowan-Farquhar model can also be written as max(λA− Eleaf) or max(A−

Eleaf/λ).

Converting the Cowan-Farquhar model to the gain-penalty format (i.e., max(A−Θ)),

the penalty and marginal penalty at the optimum are

Θ =
Eleaf

λ
, (3.5)

dΘ
dE

=
1
λ

. (3.6)

Thus,
dΘ
dE

=
dA
dE

=
1
λ

at the stomatal optimum (Table 3.2 summarizes all model penalty

functions). Note that the Cowan-Farquhar model only specifies the optimal penalty in

equations 3.5 and 3.6, not the entire instantaneous Θ(Eleaf) function. The model also does

not provide the calculation of λ or the time frame over which λ is constant.

The Cowan-Farquhar model is moot regarding meeting criteria I–III which concern
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the behavior of Θ(Eleaf) for a given instant in time, because the overall Θ(Eleaf) function is

not specified. However, criteria I–III are implicit in the model’s assumption that there is a

unique solution for
dΘ
dE

=
dA
dE

=
1
λ

. The Cowan-Farquhar model as initially specified does

not meet criteria IV–VII for realistic stomatal responses to VPD, Ca, soil moisture, and loss of

plant hydraulic conductance (but see advances of the Cowan-Farquhar model below). This

is because the optimal dA/dE is constant at 1/λ and cannot respond to these cues within

the time period when λ is constant. As pointed out previously (Buckley, 2017; Buckley et

al., 2017; Katul et al., 2010), the actual outcome for VPD and Ca responses depends on the

particular value chosen for λ. A constant λ may produce a realistic VPD response when

1/λ is low (e.g., when 1/λ < 3.5 µmol CO2 mmol−1 H2O in Fig. 3.2a). However, a problem

will arise for the VPD response when 1/λ is too high (optimal Eleaf is lower, for example,

during a drought period). Regarding Ca, an unrealistic response is also produced when 1/λ

is too high (e.g., 1/λ > 5.2 µmol CO2 mmol−1 H2O; Fig. 3.2b). A final shortcoming of the

Cowan-Farquhar model is that λ cannot be determined a priori, and thus implementing the

model predictively converts λ into a post hoc fitting parameter over an ambiguous time

frame, which limits the model’s predictive power.

3.4.1.2 The Manzoni model (2013)

There has been a considerable effort to extend the Cowan-Farquhar model, especially

how to define a variable λ based on the environment (Buckley et al., 2017; Buckley &

Schymanski, 2014; Hari et al., 1999; Katul et al., 2010, 2009; Manzoni et al., 2013; Novick et

al., 2016; Vico et al., 2013). These advances to the Cowan-Farquhar model tend to assume a

constant λ over a short time (e.g., daily) and adopt a variable λ over longer periods. Though

a variable λ may help resolve the problems with stomatal response to long-term Ca change

(Katul et al., 2010) and soil drought (Novick et al., 2016), it does not address unrealistic

stomatal responses in the short time frame where λ is constant. Moreover, the long-term

variable λ often cannot capture all the stomatal responses. For example, the Katul et al.

(2010) and Buckley et al. (2017) models do not allow λ to vary with soil drought, and the

Novick et al. (2016) model does not allow λ to vary with Caor VPD.

The Manzoni model is an example of these efforts to develop the Cowan-Farquhar

model (Katul et al., 2010, 2009; Manzoni et al., 2013). The Manzoni model assumes a plant
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maximizes the sum of cumulative photosynthesis with a given amount of water in a given

time plus an unknown additional carbon gain from using the water remaining in the soil:

max
(∫ ttotal

0
A · dt +

1
Λ
· Eremain

)
while

∫ ttotal

0
Eleaf · dt = Etotal. (3.7)

where Λ is a proportionality constant for the additional carbon gain, and Eremain is the soil

water at the end of the given time. Adding this additional carbon gain makes it possible to

optimize Etotal for the given time. As both the cumulative and additional carbon gains are

functions of Etotal, the Manzoni model is optimized when

d(
∫

A · dt)
dEtotal

+
d(Eremain/Λ)

dEtotal
= 0. (3.8)

Given that dEtotal is infinitesimal and dEtotal = −dEremain, d(
∫

A · dt)/dEtotal equals 1/λ

and d(Eremain/Λ)/dEtotal equals −1/Λ (derivation in 3.8.2). Therefore, the Manzoni model

is optimized when λ = Λ.

The penalty and marginal penalty of the Manzoni model at the optimum are defined as

Θ =
Eleaf

Λ
, (3.9)

dΘ
dE

=
1
Λ

. (3.10)

Although the Manzoni model resembles the Cowan-Farquhar model in form, the differences

between the two models are the following: (1) the Manzoni model allows Etotal to be defined

and (2) Λ (and hence λ) is a preset constant in the Manzoni model, whereas λ in the

Cowan-Farquhar model is an unknown constant whose value is often assigned from post

hoc fitting.

Like the Cowan-Farquhar model, the Manzoni model is moot with regards to meeting

criteria I–III, because the overall Θ(Eleaf) function is not specified. However, these criteria

are implicit in the model’s assumption that there is a unique solution for
dΘ
dE

=
dA
dE

=
1
Λ

.

Likewise, the Manzoni model does not meet criteria IV–VII for consistently realistic stomatal

responses to VPD, Ca, soil moisture, and loss of plant hydraulic conductance. This is because

the optimal dA/dE is constant at 1/Λ and does not respond to these cues within the time

period when Λ applies, although the authors claimed otherwise (potentially due to a

mathematical oversight, see 3.8.2). Qualitatively, however, the authors came to the correct
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conclusion that 1/λ must increase with drought, a conclusion further developed by Novick

et al. (2016). Future attempts to develop the Cowan-Farquhar approach could be guided by

the need to define a variable λ as required by criteria IV–VII.

3.4.1.3 The Prentice model (2014)

The Prentice model is a minimal cost model that assumes a plant acts to minimize the

maintenance costs of evaporation and photosynthetic capacity relative to the photosynthetic

rate (Prentice et al., 2014). Mathematically, the Prentice model also fits the general gain-

penalty framework as the model is equivalent to maximize the difference between the

photosynthesis and maintenance costs:

min
(

cEEleaf + cVVcmax

A

)
≡ max

(
A

cEEleaf + cVVcmax

)
, (3.11)

where cE is the unit cost of maintaining Eleaf, and cV is the unit cost of maintaining

photosynthetic capacity (measured by Vcmax). Therefore, the Prentice model defines the

penalty as

Θ = A ·
(

1− 1
cEEleaf + cVVcmax

)
. (3.12)

In their equation 1, Prentice et al. (2014) differentiated equation 3.11 and claimed the model

was optimized when

cE · d
(

Eleaf

A

)
+ cV · d

(
Vcmax

A

)
= 0, (3.13)

Equation 3.13 holds true when cE and cV are independent of stomatal opening as measured

by Eleaf. However, in their equation 11, Prentice et al. (2014) made another assumption that

cE =
constant

Eleaf
, (3.14)

which violates the assumption of constant cE made in equation 3.13. Therefore, only one of

equations 3.13 and 3.14 can be correct for the Prentice model.

Here, we assume that equation 3.13 is correct, and it was the intent of Prentice et al.

(2014) to make cE independent of Eleaf (see 3.8.3 for discussion of the less realistic alternative

that 3.14 is correct). In this case, the Prentice model is optimized when

dA
dE

=
A

E +
cV

cE
·Vcmax

. (3.15)
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Therefore, the marginal penalty of the Prentice model is equivalent to

dΘ
dE

=
A

Eleaf +
cV

cE
Vcmax

. (3.16)

Note that here equation 3.16 is not exactly the derivative of equation 3.12, which contains

dA/dE term in the equation, and we obtain equation 3.16 by rearranging the equations

(derivation in 3.8.3).

This version of the Prentice model defines the entire Θ(Eleaf) function (equation 3.12)

and meets criteria I and III. However, it fails to meet criterion II for being concave up with

a monotonic increase in dΘ/dE because cE and cV are independent of Eleaf. Therefore,

depending on the values of cE and cV, there could be multiple solutions for equation 3.1. In

terms of how dΘ/dE (equation 3.16) responds to environmental cues, it satisfies criteria IV

and V, thus potentially predicting realistic responses to VPD and Ca. However, the dΘ/dE

does not respond to soil drought or plant hydraulic conductance, thus violating criteria VI

and VII.

3.4.1.4 The Lu model (2016)

The Lu model assumes a plant maximizes the mean A (Lu et al., 2016) in a given ttotal:

max
(∫ Pcrit

0
f (Psoil) · A(Psoil) · dPsoil

)
, (3.17)

where f (Psoil) is the probability density function of soil water potential (Psoil), A(Psoil) is

the photosynthetic rate at given soil water potential, and Pcrit is the critical leaf xylem

pressure beyond which plant desiccates (Sperry & Love, 2015). The optimization criterion

is problematic because the Lu model assumes A(Psoil) is solely a function of Psoil regardless

of other environmental cues such as VPD and solar radiation. A broader and more accurate

optimization criterion for the Lu model would take the form:

max
(
∑ f (envir) · A(envir)

)
, (3.18)

where f (envir) is the probability of the given combination of environmental cues, and

A(envir) is the photosynthetic rate at the given combination of environmental cues.

Mathematically, equation 3.18 is equivalent to equation 3.2 (the Cowan-Farquhar model)

for a given ttotal and Etotal because maximizing mean A during a period means maximizing
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the cumulative A. Thus, the Lu model is identical to the Cowan-Farquhar model and its

optimal stomatal conductance solution is questionable (see Section 3.8.4 for additional

mathematical questions concerning the Lu model).

3.4.2 Models with a penalty based on xylem vulnerability to
cavitation

Water transport along the xylem makes the xylem water pressure more and more

negative due to gravity and friction in the xylem conduits, and the negative xylem pressure

could result in cavitation (Sperry & Tyree, 1988). The more the plant uses water, the more

likely the xylem gets cavitated, and the more energy it requires to refill the cavitated

conduits or regrow new xylem to restore the lost hydraulic conductivity. The “vulnerability

curves” that measure the loss of hydraulic conductance as a function of xylem pressure are

available for a number of species, and form the basis for penalty functions in several model

formulations.

3.4.2.1 The Wolf-Anderegg model (2016)

The Wolf-Anderegg model weighs the penalty on xylem cavitation and its consequences.

Wolf et al. (2016) first proposed the penalty for opening the stomata includes direct, indirect,

and opportunity components, including the risk of xylem cavitation. Wolf et al. (2016)

further argued that the penalty function ought to be a concave-up function (criterion

II) though did not specify the exact equation for the penalty. Anderegg et al. (2018),

which tested the Wolf et al. (2016) approach against 34 species that span global forest

biomes, assumed that the penalty is a quadratic function of leaf xylem pressure (note here

that P is in −MPa so that P is a positive number). The plant-hydraulics-based penalty

function significantly improved gas exchange modeling predictive ability relative to the

Cowan-Farquhar approach, particularly during periods of water stress. The Wolf-Anderegg

model defines the penalty function as

Θ = aP2(Eleaf) + bP(Eleaf) + c, (3.19)

where a, b, and c are fitting constants that make Θ a concave-up function of Eleaf. The xylem

pressure, P, is a function of Eleaf based on a hydraulic submodel. The marginal penalty of

the Wolf-Anderegg model is
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dΘ
dE

=
2aP(Eleaf) + b

K
, (3.20)

where K is the soil-plant hydraulic conductance at the canopy xylem pressure (i.e., dE/dP).

The optimal dΘ/dE is determined numerically as the unique point where dΘ/dE = dA/dE.

The marginal penalty of the Wolf-Anderegg model (equation 3.20) meets criteria I and II.

However, the positive constants a and b do not guarantee criterion III. In terms of responses

to environmental cues, the dΘ/dE described by constant a and b does not respond to

Ca or VPD, thus not meeting criteria IV and V and making the model unable to always

produce realistic response to Ca or VPD. Note that constant a and b may produce realistic

Ca and VPD responses when optimal Eleaf is high (similar to the Cowan-Farquhar model).

The model, however, does incorporate the K and its sensitivity to drought, hence meeting

criteria VI and VII, and potentially predicting realistic responses to drought and drought

history. The Wolf-Anderegg model relies on curve fitting two parameters (a and b), which

limits its application in projecting stomatal behavior under novel conditions.

3.4.2.2 The Sperry model (2017)

The Sperry model (Sperry et al., 2017) was built from earlier versions of hydraulic

models, which explicitly modeled gas exchange from vulnerability curves (Sperry et al.,

1998; Sperry & Love, 2015; Sperry et al., 2016). Inspired by the Wolf-Anderegg model, the

Sperry model assumes a plant maximizes the difference between relative gain and relative

hydraulic risk, both of which are standardized to 0–1 for each moment in time (Sperry et

al., 2017). The relative gain is defined as A/Amax, where Amax is the maximal achievable

photosynthetic rate while leaf diffusive conductance ranges from 0 to maximum (Amax is

not always at maximal transpiration rate, Ecrit, because of the leaf cooling). The relative

hydraulic risk is defined as 1− K/Kmax, where Kmax is the maximal K when Eleaf = 0. The

Sperry model posits

max
(

A
Amax

− 1 +
K

Kmax

)
= max

(
A− Amax ·

(
1− K

Kmax

))
. (3.21)

Θ = Amax ·
(

1− K
Kmax

)
, (3.22)

dΘ
dE

= −dK
dE
· Amax

Kmax
, (3.23)
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where equations 3.22 and 3.23 are for the complete penalty function. Like the Wolf-Anderegg

model, the optimal solution (dΘ/dE = dA/dE) is solved numerically.

The marginal penalty of the Sperry model (equation 3.23) meets criteria I–III and can be

calculated from hydraulic trait data without requiring undefined fitting parameters. Because

Amax increases with rising Ca and decreasing VPD, the Sperry model meets criteria IV and

V. Because dK/dE also increases with Eleaf before the plant desiccates, the Sperry model

meets criterion VI. However, equation 3.23 predicts a marginal penalty of 0 when there is

no new cavitation in the xylem, which can lead to unrealistic postdrought predictions when

xylem has already been cavitated, in violation of criterion VII. To handle this problem, the

Sperry model specifies that the leaf water potential after a drought equals that when there

is no drought history to account for the drought history response (Venturas et al., 2018) and

thereby satisfies criterion VII.

The Sperry model is the first model to define a penalty function without curve fitting

parameters in the optimization criteria, and it performs equally well in an open garden

experiment and better in a growth chamber experiment compared to the traditional

empirical approach which relies on curve fitting the data (Venturas et al., 2018; Wang

et al., 2019). The success of the Sperry model suggests the penalty of stomatal opening can

be explained by the need to protect hydraulic integrity. Also, the Sperry model suggests

that the penalty should not only be measured in terms of xylem transport but also weighted

by the potential for photosynthesis (i.e., Amax). The penalty to xylem cavitation is amplified

by Amax when conditions are more favorable, and this weighting strategy allows the Sperry

model to meet criteria III–V.

3.4.2.3 The Eller model (2018)

Inspired by the Sperry model, the Eller model maximizes the product of photosynthetic

rate and a correction factor, K/Kmax,0, where Kmax,0 is the maximal marginal hydraulic

conductance when there is no cavitation (Eller et al., 2018). Translated to the gain versus

penalty model format, the optimization criterion and Θ are

max
(

A · K
Kmax,0

)
= max

(
A− A ·

(
1− K

Kmax,0

))
≡ max(A · K), (3.24)
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Θ = A ·
(

1− K
Kmax,0

)
. (3.25)

Directly differentiating equation 3.25, we have

dΘ
dE

=
dA
dE
·
(

1− K
Kmax,0

)
− dK

dE
· A

Kmax,0
. (3.26)

The Eller model is optimized when dA/dE× K + dK/dE× A = 0. Thus, the marginal

penalty of the Eller model is equivalent to

dΘ
dE

= −dK
dE
· A

K
, (3.27)

which resembles the marginal penalty of the Sperry model (equation 3.23).

Like the Sperry model, the Eller model meets I–III. Due to the term “A/K”, the Eller

model can also predict realistic stomatal responses to VPD (IV), Ca (V), and Psoil (VI).

However, it predicts a marginal penalty of 0 when there is no new cavitation in the xylem,

thus not satisfying criterion VII. Unlike the Sperry model, the Eller model does not specify

how the model deals with the postdrought response.

3.4.3 Models with a penalty based on non-stomatal limitation to
photosynthesis

The penalty in NSL is different from those in water supply and xylem transport. Unlike

water supply and xylem transport issues that represent future “shadow costs” or risks

to future plant function, NSL acts by decreasing the instantaneous photosynthetic rate

independently of stomatal behavior (hence the ”non-stomatal limitation” terminology).

Potential mechanisms for NSL include photosynthetic inhibition by accumulated

photosynthate (Hölttä et al., 2017, 2009), decreasing photosynthetic capacity related to

drought (Dewar et al., 2018; Drake et al., 2017), and decreasing liquid-phase mesophyll

conductance (not including the gas-phase mesophyll conductance, which we assume

is stomatal dependent; Wang et al., in review). Mathematically, NSL could be directly

incorporated into the carbon gain function. However, as most of the NSL models did

originally, we treat NSL as part of the penalty function in this review, denoting the penalty

as Θ′ to signal the distinction. Biologically, the difference is that NSL causes the computed

instantaneous photosynthetic rate to be lower for the same Eleaf compared to the seven

models listed above.
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3.4.3.1 The Hölttä model (2017)

This model is based on coordination between sugar metabolism and phloem transport

(Hölttä et al., 2017). If the leaf photosynthesizes more than the leaf can metabolize or

transport out (Hölttä et al., 2009), photosynthesis might be inhibited by the high sugar

concentration in the mesophyll cells. This negative feedback is the source of NSL in the

Hölttä model. Based on the assumption that leaf photosynthesis metabolism decreases

linearly as sugar concentration builds up, the Hölttä model posits that leaves maximize the

instantaneous A, which is the difference of Aww and Θ′:

max
(

Aww ·
(

1− SC
SCmax

))
, (3.28)

where SC is the sugar concentration in the mesophyll cells, and SCmax is the maximal sugar

concentration at which photosynthesis is fully inhibited. Transforming the Hölttä model to

the gain versus penalty model format assuming a penalty caused by the increasing sugar

concentration, the NSL penalty (i.e., Θ′) is

Θ′ = Aww ·
SC

SCmax
, (3.29)

Again, the symbol ′ means the penalty reduces the computed instantaneous photosynthetic

rate.

Taking the first-order derivative of equation 3.29, the marginal penalty is

dΘ′

dE
=

1
SCmax

·
(

SC · dAww

dE
+ Aww ·

dSC
dE

)
, (3.30)

The Hölttä model is optimized when d(Aww × [SCmax − SC])/dE = 0, and thus the

marginal penalty for the Hölttä model is equivalent to

dΘ′

dE
=

A
SCmax − SC

· dSC
dE

, (3.31)

The marginal penalty of the Hölttä model potentially meets all the seven criteria because (1)

the penalty starts from 0 and increases with Eleaf, (2) higher Aww and SC account for the

higher penalty at higher Ca and lower VPD, (3) higher SC accounts for the higher penalty

associated with drought and hydraulic conductance loss (when xylem pressure gets more

negative, phloem turgor pressure decreases and more sugar will accumulate in the leaf).

The disadvantage of using the Hölttä model for predictive purposes is that it is based on
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incompletely understood aspects of phloem function and carbohydrate metabolism, and

requires difficult-to-measure physiological traits. Quantifying the assumption of negative

feedback between limited phloem export and photosynthetic rate requires knowing where

the sugar sinks are and how the sugar concentration impacts photosynthesis. Complicating

the calculation is the fact that the root system is not the sole sink for sugar (as assumed

by the Hölttä model), because the shoot contains major sinks, whether for storage or new

growth. Nevertheless, the penalty concept behind the Hölttä model is promising because it

meets all seven criteria for improved modeling of leaf gas exchange.

Similar to the Hölttä model, the model of Huang et al. (2018) assumes the stomata

act to coordinate the leaf-xylem-phloem system to maximize sugar transport through the

mesophyll cells to the phloem (Huang et al., 2018). The differences between the Huang

model and the Hölttä model are that (1) the Huang model does not assume any negative

feedback between sugar concentration and photosynthetic rate and thus there is no NSL in

the Huang model, and that (2) the Huang model does not model the phloem transport from

leaf to root and thus xylem cavitation does not affect the modeling of phloem transport.

Therefore, the Huang model, in theory, cannot predict realistic stomatal behavior because

there is no penalty function in the model (see Section 3.8.5 for mathematical and biological

ambiguities of the Huang model).

3.4.3.2 Dewar model (2018)

Following the format of the Hölttä model, Dewar et al. (2018) presented another two

alternative mechanisms of NSL, one through changing leaf photosynthetic capacity (CAP

limitation) and the other through changing mesophyll conductance (MES limitation). We

present the CAP model here (see Section 3.8.6 for the MES version). The Dewar CAP

model assumes leaf photosynthetic metabolism decreases linearly with leaf xylem pressure

(namely Vcmax and electron transport rate decreased linearly with more negative P). Like

the Hölttä model, the Dewar CAP model is written as

max
(

Aww ·
(

1− P
Pcrit

))
, (3.32)

The NSL penalty to photosynthesis is

Θ′ = Aww ·
P

Pcrit
. (3.33)
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Differentiating equation 3.33, we have

dΘ′

dE
=

1
Pcrit
·
(

P · dAww

dE
+

Aww

K

)
. (3.34)

The Dewar CAP model is optimized when Aww · (Pcrit − P) is maximized, namely when

d(Aww · [Pcrit − P]) = 0, and thus the marginal penalty of the Dewar CAP model is

equivalent to

dΘ′

dE
=

A
K · (Pcrit − P)

. (3.35)

Equation 3.35 mathematically meets all seven criteria for the marginal penalty because

the “Aww” term in the numerator makes the marginal penalty start from 0 and increase

with higher Eleaf and Ca and lower VPD (criteria I–V), and the “Pcrit − P” enables higher

marginal penalty with more severe drought and more loss of conductivity (criteria VI and

VII). The Dewar CAP model drives the NSL-based penalty function with the hydraulic

P/Pcrit parameter. This hydraulic parameter is easier to measure and model than the

phloem-related parameters in the Hölttä model. However, there is little evidence that Vcmax

and electron transport rate (J, not Jmax) during water stress are a linear function of P/Pcrit

as assumed by the Dewar CAP model. Furthermore, while Vcmax and J can decrease during

drought (Zhou et al., 2016), there is no direct evidence for rapid and reversible responses to

leaf xylem pressure.

3.4.4 Model performance

Eight of the nine models were evaluated by their ability to fit actual gas exchange

data. The Hölttä model was excluded because of the large number of unknown traits

required. Three datasets were tested. Wang et al. (2019) dataset were from water birch

(Betula occidentalis Hook.) exposed to stepped changes in Ca, VPD, and soil drought in a

growth chamber environment. Venturas et al. (2018) dataset were from plantation grown

aspen (Populus tremuloides Michx.) subjected to natural variation in VPD combined with

drought treatments. Anderegg et al. (2018) dataset were compiled from 36 species plus site

combinations (34 species in total) exposed to natural variation in VPD and soil drought. The

Wang et al. (2019) and Venturas et al. (2018) datasets had all the traits required for running

the optimization models except for a difficult-to-measure rhizosphere conductance (Krhiz)

component in the soil-plant-atmosphere continuum. The Anderegg et al. (2018) dataset
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lacked Krhiz, Kmax,0, and root and leaf vulnerability curves for all the species, and Vcmax for

five species.

For the birch and aspen datasets, we fitted the parameters listed in the column “Fitting

Parameters” in Table 3.2. Note it here although the Sperry, Eller, and Dewar CAP models

do not have fitting parameters in the penalty function, it is important to include the Krhiz

as it plays a non-negligible role when soil is dry. Therefore, we fitted Krhiz for all the

models that involve plant hydraulics (Table 3.2, column “Fitting Parameters”). For the

Anderegg dataset, we used the stem vulnerability curve as a proxy for the root and leaf

curves, assumed infinite Krhiz, and fitted the missing Kmax,0 and Vcmax as well as the rest of

the parameters listed in the column “Fitting Parameters” in Table 3.2.

We used the scipy.optimize.leastsq module in Python to minimize the least square error

of studentized photosynthetic rate (i.e., A), transpiration rate (i.e., Eleaf), and canopy leaf

xylem pressure (i.e., P) for each dataset. The code for the models is made publicly available

at https://github.com/Yujie-WANG/Published-Codes-Yujie-WANG. This weighted the

errors equally across A, Eleaf, and P. The mean absolute percentage error (MAPE = mean

absolute error / observed mean) for model outputs A, Eleaf, and P was calculated (Table

3.3).

The Wolf-Anderegg, Eller, and Sperry models perform better overall, suggesting the

penalty of leaf gas exchange can be successfully linked to plant hydraulic function (Fig. 3.3,

Table 3.3). Pooling all models and datasets, the Wolf-Anderegg model perform the best,

despite not meeting the criteria IV and V, followed by the Sperry and Eller models (Fig.

3.3, Table 3.3). Within the models that have no fitting parameter in the marginal penalty

function, the Sperry and Eller models perform equally well and are the best (Fig. 3.3, Table

3.3). Although the Dewar CAP model penalty equation meets all the seven criteria, it does

not perform as well as the Sperry and Eller models, and the less satisfactory performance

is due to the greater error in predicting photosynthesis (Table 3.3). This suggests it is

unrealistic to assume that the penalty reduces the instantaneous photosynthetic rate versus

represents a future “shadow cost” that does not influence current A. Indeed, when we treat

the Dewar CAP model penalty as a “shadow cost” (i.e., maximizing (A−Θ) rather than

(Aww −Θ′), its performance increases significantly (Fig. 3.3, Table 3.3).
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3.5 Paths Toward Better Optimization Modeling
From the theoretical and experimental comparisons of nine optimization gas exchange

models, we summarize four characteristics of a successful penalty function for predictive

modeling:

• Basing the penalty function on the hydraulic properties of plant and soil is effective

(especially for stomatal response to drought and loss of hydraulic conductance, criteria

VI and VII). Most importantly, the underlying physiology is well established, and

almost all of the traits related are readily measurable or at least attributable to a

specific process (as in the Krhiz case).

• Weighting the penalty by photosynthesis (A or Amax) ensures realistic stomatal

responses to VPD and Ca (criteria IV and V). Though using an arbitrary multiplier

in the marginal penalty function (e.g., “constant× Ca/VPD”) also satisfies criteria IV

and V, such an arbitrary multiplier introduces an unknown parameter that requires

curve fitting.

• Framing the penalty as a “shadow cost” of water use and transport appears to

produce better A estimation and overall performance than expressing the penalty as

an instantaneous reduction in A from NSL. In addition, the NSL concept assumes

mathematically specific physiological behavior which can have little empirical support.

Moreover, an NSL penalty can require parameters which are difficult to measure.

• Quantifying the penalty based on readily measurable and physiologically established

parameters increases model utility and increases predictive power. Physiological

parameters can also become variables in cases where their acclimation to long-term

environmental change is known, making it possible to model acclimation. Leveraging

physiologically measurable parameters will be crucial for using stomatal optimization

models in large-scale vegetation models run at regional or global scales.

These observations can drive further improvements in optimization modeling. By way of

example, we present a new optimization model based on our seven criteria and these four

summary characteristics.

The proposed new model defines the penalty as

Θ = A · Eleaf

Ecrit
. (3.36)
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This penalty is based on proximity to hydraulic failure (Eleaf/Ecrit) as defined by

vulnerability curves, is weighted by current photosynthesis, and assumes a shadow cost

rather than NSL. Taking the first derivative of equation 3.36, we have

dΘ
dE

=
1

Ecrit
·
(

Eleaf ·
dA
dE

)
. (3.37)

By rearranging equation 11b, we find that the new model is optimized when dA× (Ecrit −

Eleaf)− A× dE = 0, and the marginal penalty (equation 3.37) is equivalent to

dΘ
dE

=
A

Ecrit − Eleaf
. (3.38)

The term “
A

Ecrit − Eleaf
” makes the marginal penalty start from 0 and increase

monotonically with Eleaf (criteria I–III). The term “A” in the numerator enables the margin

penalty to increase with higher Ca and lower VPD (criteria IV and V). The term Ecrit − Eleaf

in the denominator enables the marginal penalty to increase with more severe drought

and drought history (because drought history reduces Ecrit, criteria VI and VII). When

testing the new model with the same three datasets, it performs equally well in the Wang

et al. (2019) and Venturas et al. (2018) datasets and slightly better in the Anderegg et al.

(2018) dataset compared to the Sperry and Eller models (red bars in Fig. 3.3, Table 3.3).

Furthermore, the new model is computationally more efficient because the model does not

need to calculate the soil-plant hydraulic conductance (i.e., K = dE/dP) as do the Sperry

and Eller models. Like these models, the new one also does not rely on curve fitting (except

for the Krhiz parameter, which is difficult to measure).

3.6 Conclusion
Stomatal optimization models are based on the premise that stomatal opening comes

with a photosynthetic benefit and a physiological penalty that results directly or indirectly

from transpiration. Calculating a hypothetically optimal balance between carbon gain and

penalty at each time step in a dynamic environment makes it possible to predict stomatal

behavior without knowing the underlying stimulus-response physiology and without

having to rely on empirical correlations that likely do not apply to novel environmental

conditions. As we have shown, the main challenge is in defining the penalty associated

with stomatal opening. Models typically make the implicit assumption that one or two key
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processes can serve as a proxy for what is probably a much more complex physiological web

of colimitation. Ideally, such a penalty must be based on a physiologically defensible process,

mathematically sound in providing a unique optimal solution under any environmental

conditions, and capable of predicting realistic stomatal responses to environmental cues.

Of the ten optimization models analyzed (including the new model proposed here), the

four most promising models have a penalty based on stress-induced failure of vascular

water transport. Although the four models differ in mathematical details, they all track

observed stomatal responses similarly well. This convergence supports the underlying

hypothesis that stomatal behavior evolved in coordination with vascular vulnerability,

a concept that goes back to the first measurement of xylem cavitation (Milburn, 1979).

The Darcy’s Law based physics of xylem transport facilitates modeling, and there are

rapidly growing databases of hydraulic traits for parameterization. We also found that

successful penalty functions are scaled by current photosynthetic opportunity, a weighting

that standardizes the balance between the two sides of stomatal opening and produces

realistic stomatal behavior. Future research on the coordination between hydraulic and

photosynthetic traits, and their acclimation to the environment, will allow optimization

modeling to predict longer-term responses to climate change and further advance the

modeling of carbon and water cycles globally.
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Table 3.1: List of key symbols used in the text.
Symbol Description Unit
a Fitting constant for Wolf-Anderegg model µmol CO2 m−2 s−1 MPa−2

b Fitting constant for Wolf-Anderegg model µmol CO2 m−2 s−1 MPa−1

A Net photosynthetic rate; instantaneous carbon
gain

µmol CO2 m−2 s−1

Amax Maximal A when Eleaf is varied from 0 to its Ecrit µmol CO2 m−2 s−1

Aww A without NSL (photosynthetic inhibition
independent of stomatal closure)

µmol CO2 m−2 s−1

cE Unit cost of transpiration rate µmol CO2 mol−1 H2O
cV Unit cost of photosynthetic capacity unitless
Ca Atmospheric CO2 concentration ppm (µ mol mol−1)
D Leaf-to-air vapor pressure deficit relative to

atmospheric pressure
unitless

E, Eleaf Leaf transpiration rate per leaf area mol H2O m−2 s−1

Eremain Water remained in the soil per leaf area mol H2O m−2

Etotal A given amount of water per leaf area mol H2O m−2

Ecrit Maximal E, beyond which the tree desiccates by
hydraulic failure

mol H2O m−2 s−1

GM Mesophyll conductance to CO2 per leaf area mol m−2 s−1

J Electron transport rate µmol CO2 m−2 s−1

Jmax Maximal electron transport at 25 ◦C µmol CO2 m−2 s−1

K Soil-plant hydraulic conductance at canopy xylem
pressure per basal area, dE/dP

kg H2O m−2 h−1 MPa−1

Kmax Maximal K when Eleaf = 0 kg H2O m−2 h−1 MPa−1

Kmax,0 Maximal K when there is no cavitation kg H2O m−2 h−1 MPa−1

Krhiz Rhizosphere hydraulic conductance per basal area kg H2O m−2 h−1 MPa−1

NSL Non-stomatal limitation to photosynthesis
P Leaf xylem water pressure −MPa
Pcrit Most negative P at Ecrit, beyond which tree

desiccates
−MPa

Psoil Soil water potential −MPa
SC Sugar concentration in mesophyll cells mol m−3

SCmax Maximal SC at which photosynthesis is fully
inhibited

mol m−3

ttotal A given time period s
Vcmax Maximal carboxylation rate at 25 ◦C µmol CO2 m−2 s−1

VPD Atmospheric vapor pressure deficit kPa
Γ CO2 compensation point with the presence of

respiration
ppm

λ Lagrangian multiplier, optimal dE/dA mol H2O µmol−1 CO2
Λ Proportionality constant for additional carbon

gain
mol H2O µmol−1 CO2

Θ Instantaneous carbon penalty µmol CO2 m−2 s−1

Θ′ Instantaneous carbon penalty, results in decline in
A

µmol CO2 m−2 s−1
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Table 3.3: Optimization model performance on three datasets. The MAPE stands for
mean absolute percentage error (i.e., absolute error relative to the observed mean) for
leaf photosynthetic rate (A), tree transpiration (Eleaf), and leaf xylem pressure (P). The
Dewar CAP* model assumes the penalty is a “shadow cost” rather than a real decline in
the instantaneous photosynthetic rate as in the original Dewar CAP version (Dewar et al.,
2018).

Model
MAPE for birch MAPE for aspen MAPE for 36

A E P mean A E P mean species + sites
Cowan-Farquhar 44.3 52.7 26.3 41.1 42.0 56.5 33.2 43.9 111.2 ± 51.9
Manzoni 44.3 52.7 26.3 41.1 42.0 56.5 33.2 43.9 111.2 ± 51.9
Prentice 44.6 49.1 21.5 38.4 36.3 57.5 35.8 43.2 114.1 ± 62.5
Lu 44.3 52.7 26.3 41.1 42.0 56.5 33.2 43.9 111.2 ± 51.9
Wolf-Anderegg 38.2 34.1 16.7 29.7 34.9 24.9 11.7 23.8 47.3 ± 14.0
Sperry 38.1 27.8 14.5 26.8 29.5 39.5 23.9 29.7 61.4 ± 38.8
Eller 38.3 31.4 16.8 28.8 25.7 36.8 24.5 29.0 60.9 ± 39.8
Dewar CAP 63.2 50.0 38.6 50.6 66.3 37.2 38.4 47.3 89.9 ± 39.6
Dewar CAP* 38.1 31.7 42.1 37.3 52.5 25.3 40.2 39.4 70.0 ± 37.5
New Model 37.4 34.2 12.7 28.1 25.1 37.7 24.8 29.2 52.9 ± 21.3
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Figure 3.1: Leaf carbon gain (A) and marginal carbon gain as a function of leaf transpiration
rate (Eleaf, all else constant). The instantaneous A(Eleaf) function and corresponding
marginal leaf carbon gain (dA/dE) varies with atmospheric vapor pressure deficit (VPD)
and atmospheric [CO2] (Ca) (arrows show increasing VPD (+VPD) and Ca(+Ca)).
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Figure 3.2: Required behavior of a penalty function that produces realistic responses to
specific environmental cues (all else constant). The dotted curves are default marginal gain
(green) and marginal penalty (red) as a function of Eleaf for a given moment in time. The
solid circle at their intersection is the original optimal solution for that moment. The solid
curves or shaded regions indicate changes in the marginal gain (green line) or marginal
penalty (red shaded region) induced by a change in the indicated environmental cue. The
thickened black band at the new intersection between the updated marginal gain curve
(solid green) and range of penalty curves (red shading) indicates a range of qualitatively
realistic optimal solutions. Arrows indicate the direction of the stomatal response to the
environmental cue. (a) Response to an increase in vapor pressure deficit (+VPD). The
optimal solution must typically predict either no change or an increase in transpiration rate
(Eleaf). (b) Response to an increase in atmospheric CO2 concentration (+Ca). The optimal
solution must predict either no change in Eleaf or (more typically) a decrease in Eleaf. (c)
Response to a decrease in plant hydraulic conductance caused by ongoing drought or prior
drought (−K). The marginal gain curve (dotted line) does not change. The optimal solution
must predict a reduction in Eleaf.
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Figure 3.3: Model performance in fitting three datasets. Performance is measured in terms
of the mean absolute percentage errors (MAPEs) of the model fitting for photosynthetic rate,
transpiration rate, and leaf xylem pressure (bars above each indicated model). The cyan
bars highlight the best-fitting previously published models. The blue bar is for the Dewar
CAP* model where we assume the penalty is a “shadow cost” rather than a reduction in
photosynthesis caused by a non-stomatal limitation as originally intended. The red bar
refers to the model developed in this review. (a) Data from water birch saplings exposed to
change in CO2, atmospheric vapor pressure deficit (VPD), and soil moisture in a growth
chamber (Wang et al., 2019). (b) Data from aspen saplings exposed to natural changes in
VPD and various levels of drought (Venturas et al., 2018). (c) Data from 36 species + site
combinations exposed to natural variation in VPD and soil drought (Anderegg et al., 2018).
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3.8 Supporting Information
3.8.1 Marginal water use efficiency when Eleaf = 0

Marginal water use efficiency must be higher than the marginal risk when Eleaf = 0 for

the two functions intersect. When Eleaf = 0, net assimilation rate is 0 during the day. With

an incremental increase in Eleaf to dE, the leaf diffusive conductance for CO2 increases by

dG =
dE

1.6 · D (in mol m−2 s−1), where D is the leaf-to-air vapor pressure deficit relative to

atmospheric pressure. The net photosynthesis increases by dA:

dA = dG · (Ca − Ci) =
dE

1.6 · D · (Ca − Ci) , (3.39)

where Ca is the atmospheric CO2 concentration in µmol mol−1, and Ci is the intercellular

CO2 concentration. As dE is infinitesimal, Ca − Ci = Ca − Γ , where Γ is the CO2

compensation point with the presence of dark respiration. Thus, the marginal water

use efficiency when Eleaf = 0 is given as

dA
dE

∣∣∣∣
Eleaf=0

=
Ca − Γ

1.6 · D . (3.40)

The unit for dA/dE is µmol H2O µmol−1 CO2.

3.8.2 Derivation of the Manzoni model

The Manzoni model posits a plant maximizes the cumulative photosynthesis in a given

amount of time plus an additional carbon gain by using the water remaining in the soil

(Manzoni et al., 2013):

max
(∫ ttotal

0
A · dt +

1
Λ
· Eremain

)
while

∫ ttotal

0
Eleaf · dt = Etotal. (3.41)

The more the plant uses water during the time, the less water remains in the soil, and thus

we have

dEtotal = −dEremain. (3.42)

Further, according to the Cowan-Farquhar model, during the time, the marginal water

use efficiency, that is,
dA
dE

=
1
λ

; and for an infinitesimal increase of dEtotal, the change of

marginal water use efficiency is negligible. Therefore, at the optima of the Manzoni model,

that is,
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d(
∫

A · dt)
dEtotal

+
d(Eremain/Λ)

dEtotal
= 0, (3.43)

we have

d(
∫

A · dt)
dEtotal

=
1
λ

, (3.44)

d(Eremain/Λ)

dEtotal
= − 1

Λ
, (3.45)

meaning the Manzoni model is optimized when λ = Λ.

The penalty and marginal penalty of the Manzoni model are defined as

Θ =
Eleaf

Λ
, (3.46)

dΘ
dE

=
1
Λ

. (3.47)

3.8.3 Derivation of the Prentice model

Prentice et al. (2014) made two contradicting assumptions (see equations 3.13 and

3.14). In the main text, we assumed that equation 3.13 was correct. Alternatively, if

equation 3.14 in the main text (their equation 1) is correct, the solution for the Prentice

model is max
(

A
constant + cVVcmax

)
. Given that cV is independent of Eleaf and that Vcmax is

constant in a short time (e.g., days), the penalty defined in equation 3.14 in the main text is

proportional to A. The solution for the Prentice model is equivalent to max(A) and dA/dE

= 0. In this case, the optimal marginal penalty of the Prentice model is equivalent to dΘ/dE

= 0, which is a special case of the Cowan-Farquhar model and violates the criteria IV–VII.

This version of the Prentice model also violates criteria I–III for a solution to equation 3.1 in

the main text, because it defines Θ = constant ·A (equations 3.12 and 3.14), and the dΘ/dE

= constant · dA/dE.

The Prentice model also fits the general gain-penalty framework as the model can be

written as

min
(

cEEleaf + cVVcmax

A

)
≡ max

(
A

cEEleaf + cVVcmax

)
. (3.48)

Therefore, the penalty of the Prentice model is

Θ = A ·
(

1− 1
cEEleaf + cVVcmax

)
. (3.49)
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Differentiating equation 3.49 gives

dΘ
dE

=
dA
dE
·
(

1− 1
cEEleaf + cVVcmax

)
+

cE A

(cEEleaf + cVVcmax)
2 . (3.50)

However, there is a dA/dE term in the marginal penalty function. As the gain-penalty

model is optimized when dA/dE = dΘ/dE, the Prentice model is optimized when

dA
dE

=
dA
dE
·
(

1− 1
cEEleaf + cVVcmax

)
+

cE A

(cEEleaf + cVVcmax)
2 . (3.51)

Rearranging equation 3.51 gives

dA
dE

=
cE A

cEEleaf + cVVcmax
=

A

Eleaf +
cV

cE
Vcmax

. (3.52)

Therefore, the marginal risk function of the Prentice model is equivalent to

dΘ
dE

=
A

Eleaf +
cV

cE
Vcmax

. (3.53)

3.8.4 Mathematical errors in the Lu model

The Lu model assumes a plant maximizes the mean photosynthetic rate weighted by

the soil moisture distribution in a given amount of time. This assumption is equivalent to

maximizing the total amount of the cumulative photosynthesis (Lu et al., 2016). Thus, the

Lu model is identical to the Cowan-Farquhar model.

The reason why the Lu model solution differed from the Cowan-Farquhar model is that

mathematical errors were apparently made. For example, in their equation 12, the authors

assumed

d(
∫

z · dx)
dy

=
∫ dz

dy
· dx, (3.54)

which can be proven wrong by setting z = 1 and x = y (then
d(
∫

z · dx)
dy

equals 1 but∫ dz
dy
· dx equals 0). The correct equation should be

d(
∫

z · dx)
dy

=

d
(∫

z · dx
dy
· dy

)
dy

= z · dx
dy

. (3.55)
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3.8.5 Mathematical and biological ambiguities in the Huang model

The Huang model assumes the stomata act to coordinate the leaf-xylem-phloem system

to maximize the sugar transport through the mesophyll cells to the phloem (Huang et

al., 2018). The difference between the Huang model and the Hölttä model is that the

Huang model does not assume any negative feedback between sugar concentration and

photosynthetic rate. From the physiological perspective, the Huang model can be written as

max(Kxp · Sxp · (Pxy − Pph) · SCph), (3.56)

where Kxp is the water permeability from xylem conduit to phloem, Sxp is the contact area

between xylem conduit and phloem, Pxy is the water potential of the leaf xylem, Pph is the

water potential of the phloem cell, and SCph is the sugar concentration in the phloem cell.

Note here that leaf xylem water potential, Pxy, is different from leaf xylem pressure, P. In

the xylem conduit, Pxy is the sum of water pressure (here it is P), osmotic water potential,

and gravitational potential:

Pxy = P− SCxyRT + ρgh, (3.57)

where SCxy is the solute concentration of xylem sap that is neglectable, RT is the gas constant

times the Kelvin temperature, and h is the height of the xylem conduit. In the phloem

conduit, Pph is the sum of water pressure (here it is the turgor pressure of the phloem cell,

TPph), osmotic water potential, and gravitational potential:

Pph = TPph − SCphRT + ρgh, (3.58)

Combining equations 3.56–3.58, the Huang model can be written as

max(Kxp · Sxp · (P− TPph + SCphRT) · SCph). (3.59)

Equation 3.59 differs from their equations 10 and A.1 of Huang et al. (2018) because the

authors made the following assumptions:

• phloem turgor pressure can be neglected;

• xylem water is the sole source of water into the phloem;

• xylem water pressure equals xylem water potential;

• all photosynthetic products are transported via the phloem.
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The first assumption can only stand if the phloem sugar transport relies only on diffusion,

which is not possible as more and more evidence suggests the transport is driven by Munch

flow (e.g., Hölttä et al., 2009; Rockwell et al., 2018). The second assumption cannot stand

because of the symplastic flow between phloem cell and its companion cell. The third

assumption results in great error when h is unneglectable. The last assumption is not true

because the sugars are also metabolized within the mesophyll cells.

Solving equation 3.59 requires modeling the carbon sink strength and computing the

turgor pressure in the loading phloem cell, as the Hölttä model does. However, Huang et al.

(2018) neglect the turgor pressure and further erroneously compute SCph. The unrealistic

assumptions made by Huang et al. (2018) result in incorrect interpretation of their model.

The Huang model, if TP solved numerically, is the case of the Hölttä model that has no

negative feedback from sugar concentration. The optimal solution of the Huang model,

therefore, is max(A), and penalty and marginal penalty of Huang model are

Θ = 0, (3.60)

dΘ
dE

= 0. (3.61)

Therefore, the Huang model is a special case of the Cowan-Farquhar model (λ = 0) and

violates criteria I and III–VII.

3.8.6 The Dewar MES model

The Dewar MES model assumes that GM decreases as P gets more negative. This

assumption holds correct if the more negative P results from drier soil because stomata also

close more (Dewar et al., 2018). However, if the more negative P results from more stomatal

opening (i.e., when GH increases), the assumption is not supported as GM is reported to

increase with GH (Flexas et al., 2013). Further, there is no experimental evidence for how the

liquid-phase GM varies with the environment. Both the CAP and MES hypotheses that leaf

photosynthetic capacity and GM (liquid-phase part), like the sugar inhibition hypothesis

made by the Hölttä model, hold promise for improving the modeling of photosynthesis,

especially for long-term simulations. However, more investigations of whether and how the

photosynthetic capacity and liquid-phase GM change with the environment are required.
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Modeling stomatal control is critical for predicting forest responses to the changing environment and hence the global

water and carbon cycles. A trait-based stomatal control model that optimizes carbon gain while avoiding hydraulic

risk has been shown to perform well in response to drought. However, the model’s performance against changes in

atmospheric CO2, which is rising rapidly due to human emissions, has yet to be evaluated. The present study tested

the gain–risk model’s ability to predict the stomatal response to CO2 concentration with potted water birch (Betula
occidentalis Hook.) saplings in a growth chamber. The model’s performance in predicting stomatal response to changes

in atmospheric relative humidity and soil moisture was also assessed. The gain–risk model predicted the photosynthetic

assimilation, transpiration rate and leaf xylem pressure under different CO2 concentrations, having a mean absolute

percentage error (MAPE) of 25%. The model also predicted the responses to relative humidity and soil drought with

a MAPE of 21.9% and 41.9%, respectively. Overall, the gain–risk model had an MAPE of 26.8% compared with the

37.5% MAPE obtained by a standard empirical model of stomatal conductance. Importantly, unlike empirical models,

the optimization model relies on measurable physiological traits as inputs and performs well in predicting responses

to novel environmental conditions without empirical corrections. Incorporating the optimization model in larger scale

models has the potential for improving the simulation of water and carbon cycles.

Keywords: CO2 concentration, drought, gain–risk optimization model, gas exchange, hydraulic risk, stomatal control.

Introduction

During the past 60 years, atmospheric CO2 concentration

has increased from 314 to 410 ppm. This accumulation of

greenhouse gas has led to a 0.85 ◦C increase in the global

mean annual temperature (IPCC 2014). The rapid temperature

increase has likely exacerbated drought stress on forests in

many regions, leading to episodes of drought-induced tree

mortality across the globe (Adams et al. 2009, Allen et al.

2010). However, concurrent atmospheric CO2 fertilization may

mitigate the negative temperature effects on drought (Zinta et

al. 2014, AbdElgawad et al. 2015, Gonzalez-Benecke et al.

2017). Fully understanding and predicting the outcomes of

climate change and CO2 fertilization on terrestrial ecosystems

are contingent on models that can be used to predict responses

to novel future environments (Katul et al. 2009, 2010, Medlyn

et al. 2011, Chen et al. 2012, Mcdowell et al. 2013, Mackay

et al. 2015, Anderegg et al. 2017, Tai et al. 2017).

A critical modeling challenge is how to represent the com-

plexity of stomatal behavior that influences plant water loss and

CO2 uptake. To date, most land surface models rely on empirical

representations of stomatal responses to environmental cues

based on curve fitting to existing data sets (Ball et al. 1987,

Leuning 1995, Tuzet et al. 2003, De Kauwe et al. 2013, Walker

et al. 2014, Drake et al. 2017). The empirical models are

computationally efficient and do not require an understanding of

†The present study is a revision for TP-2018-481.
© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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the complex mechanisms underlying stomatal regulation (Chen

et al. 2012, Hills et al. 2012). However, the fitted parameters of

these models lack physiological or physical identities and cannot

be derived explicitly from measurable plant traits (Anderegg

et al. 2016, Sperry et al. 2017). Consequently, the empirical

approach has a strong risk of being inadequate for accurately

predicting plant responses to novel conditions (Powell et al.

2013, Anderegg et al. 2015, Drake et al. 2017, Trugman et al.

2018b). These models also do not directly predict the impact

of drought stress on the plant’s vascular transport system,

the damage of which is strongly linked to the plants’ drought

responses and mortality risk (Sperry and Love 2015, Sperry

et al. 2016, Adams et al. 2017, Trugman et al. 2018a).

As an alternative to the strictly empirical approach, a goal-

oriented solution for stomatal behavior is potentially powerful,

i.e., assuming that plants optimize water use relative to pho-

tosynthetic gain. A commonly used approach is the Water Use

Efficiency Hypothesis (WUEH), which maximizes the photosyn-

thetic gain for a given amount of water during a given time

period (Cowan and Farquhar 1977). This WUEH model is a

‘constrained-optimization’ problem without an exact solution

(Katul et al. 2009, 2010, Wolf et al. 2016, Buckley et al. 2017)

and often struggles to predict accurate response to [CO2]

and soil moisture (Buckley and Schymanski 2014, Buckley

2017). The WUEH holds that stomata regulate to maintain a

constant marginal water-use efficiency, λ. Katul et al. (2009,

2010) solved the optimal stomatal conductance as a function

of atmospheric humidity, atmospheric [CO2] and λ, recovering

the stomatal response to atmospheric humidity used by a

standard empirical approach (Medlyn et al. 2011). However,

the stomatal responses to atmospheric [CO2] and soil moisture

were unrealistic unless λ is a function of both. Manzoni et al.

(2013) further advanced the theory by incorporating the soil–

plant limitation to leaf water supply and managed to predict

realistic stomatal response to soil moisture, but did not consider

the response to atmospheric [CO2]. Thus, a perpetual challenge

for the WUEH has been the need to predict λ and its dynamics

in response to the full suite of fluctuating environmental stimuli,

including [CO2].

A recently proposed model assumes that the stomata regulate

gas exchange so as to maximize the instantaneous carbon

gain minus the risk of hydraulic failure by embolism formation

(Sperry et al. 2017). The gain and risk of the stomatal opening

are given equal weight, each being normalized to start from

0 at stomatal closure (no hydraulic risk but no carbon gain)

and rise to 1 as stomata open (maximum photosynthesis

but desiccation due to hydraulic failure). This optimization

concept predicts realistic theoretic gas exchange response to

environmental cues including the response to [CO2] and soil

moisture stress (Sperry et al. 2017). The gain–risk model

has been shown to predict stomatal behavior and plant water

status in natural droughts and research garden experiments

(Anderegg et al. 2018, Venturas et al. 2018). Importantly,

the gain–risk model is based on measurable plant physio-

logical traits and hence directly calculates plant physiologi-

cal status for any combination of environmental conditions,

past or future.

The gain versus risk trade-off algorithm has not been fully

tested under elevated [CO2] (Venturas et al. 2018). The atmo-

spheric [CO2], however, is predicted to at least double to

800 ppm by the end of 21st century (RCP8.5, IPCC 2014).

Thus, rigorous testing of the algorithm at elevated [CO2] is

needed to validate the model predictions of plant responses

under novel future environmental conditions.

The goal of the present paper is to evaluate the gain–risk

algorithm with particular emphasis on its ability to predict the

response to short-term changes in [CO2]. Experiments were

conducted in a growth chamber to provide maximal control

of environmental conditions. Water birch (Betula occidentalis

Hook.) was chosen as the study species as it is relatively

vulnerable to drought (Sperry and Saliendra 1994). The plants

were potted to simplify the modeling of rooting depth and soil

water balance. The growth chamber setting also allowed testing

the modeled responses to individual stimuli in isolation ([CO2],

relative humidity (RH) and soil drought), which was not possible

to do in the research garden experiment (Venturas et al. 2018).

The ability of the gain–risk model to predict the experimental

results was compared with a standard empirical stomatal model

(Medlyn et al. 2011) parameterized to the best fit the same

experimental data.

Materials and methods

Plant materials

Water birch (B. occidentalis Hook.) trees were grown from

seedlings in the greenhouse of the School of Biological Sci-

ences, University of Utah (40◦ 45′ 48.75′′ N, 11◦ 50′ 57.66′′
W, 1425 m above sea level) starting in October 2016. Each

tree was grown in a 5-gallon pot with local sandy clay loam

soil. Plants were well watered and day length was regulated

to 10 h from 8:00 a.m. to 6:00 p.m. with supplemental light

(Lucalox LU1000, GE Lighting, East Cleveland, Ohio, USA). In

February 2017, 2 weeks prior to the experiments, 10 trees (1–

1.5 m tall, 2 years old) were moved into a growth chamber

(Model PR-915, Percival Scientific, Perry, Iowa, USA) in order to

acclimate the trees to the growth chamber environment. The

growth chamber was set at the default settings of ambient

CO2 concentration at 400 ppm, air temperature at 25 ◦C,
RH at 55%, light intensity (photosynthetic active radiation,

PAR) at 1000 μmol m−2 s−1 and day length at 10 h (from

8:00 a.m. to 6:00 p.m. local time). Trees were watered with

1 l water at the end of each day until the drought experiment

was initiated.

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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Experimental design

Growth chamber trees were subjected to three sequential treat-

ments: ambient CO2 concentration, RH and soil drought. The

responses of leaf xylem pressure and leaf gas exchange were

measured during each treatment. The CO2 treatment was con-

ducted on six trees (trees no. 1–6) at a series of ambient

CO2 concentrations starting at 800 ppm, and stepping down

to 600, 400, 300 and 200 ppm. All other environmental

conditions were kept at default settings. Trees were held at

each concentration for at least 90 min prior to measurements.

The CO2 response was measured from high to low [CO2] in

order to avoid any legacy impact of cavitation due to more

negative leaf xylem pressures at lower [CO2]. At the end of the

experiment, the chamber [CO2] was returned to the default at

400 ppm.

Next, the RH treatment was conducted on six trees (trees no.

1, 2 and 7–10) at a series of RH settings of 75%, 65%, 55%,

45% and 35% while keeping other environmental conditions

at default settings. The actual chamber vapor pressure deficit

(air VPD) was estimated for each gas exchange measurement

based on spot measurements of RH and air temperature. The

humidity response was measured going from high to low RH in

order to avoid the potential legacy of cavitation due to lower leaf

xylem pressure in drier air. A different set of trees were chosen

for the RH (and soil drought, below) treatments to decrease the

reduction in leaf area caused by sampling for pressure chamber

measurements of xylem pressure. After the RH experiment, the

chamber RH was set back to the default 55%.

The final drought response experiment was also performed

on six trees (trees no. 2, 4, 6 and 8–10). Trees were watered

only on the first day and dried for four successive days, with

measurements conducted at the end of the day. After the

measurements, trees were bagged and placed in the dark for

at least 3 h to suppress transpiration and equilibrate leaf xylem

pressure with soil water potential. Leaf xylem pressure was

measured on two to three leaves for each bagged tree and

served as a proxy for the soil water potential at the end of the

day. Trees were then moved back into the growth chamber for

further drought. The growth chamber conditions and timing for

leaf xylem pressure measurements of the CO2, RH and drought

treatments are listed in supplementary data Table S1 (available

as Supplementary Data at Tree Physiology Online).

The tree response to each treatment (CO2, RH, soil drought)

was assessed from measurements of gas exchange and xylem

pressure. Gas exchange measurements were performed only

when the light had been turned on for at least 120 min

and when the growth chamber environment had stabilized

for 90 minutes. The whole-tree transpiration rate (Etree) was

measured with a 0.5 g precision 34 kg range balance (Sartorius

LP34000P, Sartorius Corporation, Goettingen, Germany). The

total weight was recorded to the computer every 10 s for

6–10 min. Whole-tree transpiration rate was estimated from

the slope of the linear regression of weight loss versus time.

Leaf level gas exchange (including photosynthetic rate, stomatal

conductance and leaf temperature, T leaf ) was measured on two

to four leaves on each tree at each treatment stage with a

portable photosynthesis system (Li-6800, LICOR Inc., Lincoln

NE, USA) by setting the Li-6800 chamber temperature at

the growth chamber temperature. One of the leaves used in

the photosynthesis measurement was then used in the leaf

xylem pressure measurement with a pressure chamber (PMS

Instruments, Corvallis, OR, USA; precision ±0.05 MPa) for each

tree at different stages of three treatments. Transpiring leaf

xylem pressures were measured only for three stages in each

treatment in order to minimize the disturbance of decreased

leaf area.

Model description

The gain–risk model (Sperry et al. 2017) was modified for the

input/output of this study (Table 1). The model was coded with

Julia (Julia 0.4.7, NumFocus) and is publicly available (https://

github.com/Yujie-WANG/Published-Codes-Yujie-WANG). The

plant was represented by one canopy sunlit layer, one stem

element, one root layer and one rhizosphere and soil layer in

series. No shaded canopy layer was modeled because there was

no significant leaf shading for the small saplings (1.0–1.5 m tall)

in the growth chamber, and only one root layer was used due to

the homogeneous soil moisture in a small pot. Leaf temperature

was not modeled in this version because the main purpose of

the study was to test the accuracy of the optimization algorithm

itself rather than the additional energy balance routine that

predicts T leaf in the full version (Sperry et al. 2017, Venturas

et al. 2018). Instead, the T leaf required by the model was an

input and was averaged from the T leaf measurements for each

tree. The model simulations assumed that cavitation of xylem

conduits was irreversible (no xylem refilling). Examples of how

xylem water pressure and hydraulic conductivity loss respond

to the environmental cues can be found in Figure S1 (available

as Supplementary Data at Tree Physiology Online).

The gain–risk model calculates the relative photosynthetic

gain and hydraulic risk of stomatal opening at each time step.

The gain is the photosynthetic rate relative to the maximum

possible achieved by stomata opening at that time step. Maximal

carboxylation rate at 25 ◦C (Vcmax), maximal electron transport

at 25 ◦C (Jmax), air temperature, T leaf , PAR and ambient [CO2]

are the necessary inputs for computing the photosynthetic

gain (Table 1). The risk function measures the relative loss of

hydraulic conductance at the end of the transpiration stream,

which rises from 0 at stomatal closure to 1 for complete failure

at the runaway cavitation. Necessary inputs include the soil

moisture, rhizosphere resistance, vulnerability curves (VCs) and

maximal conductances of the root, stem and leaf elements of

the flow path, as well as the leaf area per basal area (Table 1).

Once the gain and risk functions are calculated as a function

Tree Physiology Volume 39, 2019
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Table 1. List of symbols, definitions and status as model input or output. Note that leaf temperature and soil water potential are used as input in

this model to test the gain–risk algorithm while they are used as outputs in other versions of the model (Venturas et al. 2018).

Symbol Definition Unit Input/output

A Photosynthetic assimilation, photosynthetic rate μmol CO2 m−2 s−1 Output

Ca Atmospheric CO2 concentration ppm Input

Ci Intercellular CO2 concentration ppm Output

D Leaf-to-air vapor pressure deficit kPa –

Etree Transpiration rate of the tree per basal area kg h−1 m−2 Output

Jmax Maximal electron transport at 25 ◦C μmol CO2 m−2 s−1 Input

Kmax Maximal tree hydraulic conductance kg h−1 MPa−1 m−2 Input

K rhizo Maximal tree rhizosphere conductance kg h−1 MPa−1 m−2 Input

La:Ba Leaf area to basal area ratio m2 m−2 Input

MAPE Mean absolute percent error % –

PAR Photosynthetic active radiation μmol m−2 s−1 Input

Pleaf Leaf xylem pressure under light condition MPa Output

Ppd Predawn leaf xylem pressure, a proxy for soil water potential MPa –

Psoil Soil water potential MPa Input

RH Relative humidity % –

T leaf Leaf temperature ◦C Input

VC Xylem vulnerability curve to cavitation – Input

Vcmax Maximal carboxylation rate at 25 ◦C μmol CO2 m−2 s−1 Input

VPD Vapor pressure deficit in the air kPa Input

Weibull B Fitting parameter of the VC Weibull function −MPa Input

Weibull C Fitting parameter of the VC Weibull function – Input

of stomatal opening, the optimization algorithm finds the point

at which the gain minus risk difference is maximized. This

predicts the gas exchange and water status parameters (e.g.,

photosynthetic rate, transpiration rate, leaf xylem pressure) at

the time step. Model details can be found in Sperry et al. (2017)

and Venturas et al. (2018).

Measuring model input parameters

Photosynthesis parameters Vcmax and Jmax at 25 ◦C were

obtained from the measured relationship between the pho-

tosynthetic rate (A) and intercellular CO2 concentration (Ci),

A–Ci curves. These curves were obtained for each tree in the

growth chamber prior to each experimental treatment. For each

curve, the net photosynthetic rates were measured at the leaf

temperature of 25 ◦C and light intensity of 1000 μmol m−2 s−1

under a series of CO2 concentrations: 50, 100, 150, 200, 300,

400, 500, 600, 800, 1000, 1200, 1400, 1600, 1800 and

2000 ppm. The dark respiration rate was then measured at the

leaf temperature of 25 ◦C and PAR = 0. The gas exchange

measurements were done with a portable photosynthesis sys-

tem (Li-6800). A–Ci curves were fitted to obtain the Vcmax

and Jmax with the scipy.optimize.leastsq module in Python 3.6.5

(code provided with the gain–risk model). A total of 43 A–Ci

curves were constructed for the 10 trees and the average Vcmax

and Jmax for each tree were calculated and used as model

input. Ambient [CO2] and light were recorded from the growth

chamber. Leaf temperatures were recorded from the Li-6800

where the inlet air temperature was set to the chamber air

temperature.

Vulnerability curves for the root and stem Vulnerability curves

of root, stem and leaf were constructed from well-watered,

greenhouse-grown trees of the same cohort for the growth

chamber experiments. Branches ∼80 cm long and roots were

harvested, wrapped with black plastic bags and transported to

the lab within 5 min of the collection. Stem and root segments

16–20 cm long were cut under water. The segments were

vacuum infiltrated in 10 mM KCl for 30 min to remove the

emboli in vessels. The segments were trimmed to 13.8 cm and

maximal hydraulic conductivity was measured with a conductiv-

ity apparatus (Sperry et al. 1988). Stem and root segments

were then spun in a custom built rotor in a centrifuge for

10 min to introduce embolism under different pressures (Alder

et al. 1997). Hydraulic conductivity was measured immediately

after taking the segment out of the centrifuge by correcting

the background flow (Hacke et al. 2000, Torres-Ruiz et al.

2012). Each segment was only used to measure the maximal

conductivity and conductivity after spinning in the centrifuge

(single spin method, Hacke et al. 2015). A total of 39 stem

segments and 24 root segments were used to construct the VCs

for stem and root, respectively. Root and stem VCs were fitted

to the Weibull function, k = kmax × exp[−(P/B)∧C], where kmax

is the maximal hydraulic conductance of the element, B and C

are the fitted Weibull parameters and P is the xylem pressure in

MPa.

Vulnerability curve for the leaf Potted trees in the greenhouse

were dried to different leaf xylem pressures and then

transported to the lab. Leaf xylem pressure was measured

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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on two to three bagged leaves for each stressed tree and then a

leafy branch (basal diameter >5 mm) was harvested from the

tree. Leaf edges were trimmed to expose the minor veins. The

hydraulic conductance of the branch (kbr) was measured using

the vacuum chamber method (Kolb et al. 1996). Then leaves

were cut from the branches at the proximal base of the petiole

and hydraulic conductance of the stem (kst) was measured

under a series of vacuum pressures. The hydraulic conductance

of the leaf xylem was computed as klf = 1/(1/kbr−1/kst).

The leaf VC was constructed with 31 branches by plot-

ting the klf versus leaf xylem pressure and fitting the

Weibull function.

Maximal tree hydraulic conductance and its partitioning
The whole-tree Kmax per basal area represents the hydraulic

conductance in the absence of any embolism. It was back-

calculated from measured tree conductance under well-watered

conditions, based on the VCs (Sperry and Love 2015, Ven-

turas et al. 2018). Tree conductance (per growth chamber

tree) was the quotient of measured midday transpiration rate

and the difference between midday leaf xylem pressure and

predawn leaf xylem pressure. The Python script to solve for Kmax

from measured tree conductance can be found along with the

model code.

The Kmax had to be partitioned into root, stem and

leaf components (the rhizosphere resistance under wet soil

conditions is negligible). The fraction of tree hydraulic resistance

(reverse of conductance) in the roots was computed as

(Pmd,b − Ppd)/(Pmd − Ppd), where Ppd is the predawn

leaf xylem pressure, Pmd,b is midday bagged leaf xylem

pressures of leaves inserted near the root crown and

Pmd is midday xylem pressure of transpiring leaves in the

canopy. The stem versus leaf resistance ratio was obtained

from the vacuum method, i.e., klf /kst. The resistance ratios

of the stem and leaf to the whole tree were calculated

as (Pmd − Pmd,b)/(Pmd − Ppd) × klf /(klf + kst) and

(Pmd − Pmd,b)/(Pmd − Ppd) × kst/(klf + kst), respectively.

Leaf area and stem area After the experimental treatments

were concluded in the growth chamber, the 10 experimental

trees were cut to measure the leaf area and stem area. All the

shoots were cut from the trees; leaf area and stem area were

measured to obtain the leaf area to stem area ratio (La:Ba). Leaf

areas were measured with a leaf area meter (Li-3100, LICOR

Inc. Lincoln NE, USA). Three out of 10 trees (trees no. 3, 5 and

7) had a smaller La:Ba while 7 out of 10 trees (trees no. 1, 2, 4,

6 and 8–10) had a bigger La:Ba, so two different average ratios

were computed for these two subsets and used as model input.

Stem basal area was summed from the shoots in the pot. The

average leaf area per basal area and stem basal area per tree

were used to convert between leaf area-specific versus whole-

tree transpiration rate.

Rhizosphere resistance The hydraulic conductance in the

rhizosphere (K rhizo) cannot be measured directly. The rhi-

zosphere conductance was obtained from the value that

minimized the sum of standardized square error (i.e., the sum

of [measured − modeled/mean measured]2) of leaf xylem

pressure, transpiration rate and photosynthetic rate across

all comparisons in the CO2, RH and drought treatments (90

observations in total).

Soil moisture For the CO2 and RH treatments, ‘predawn’ leaf

xylem pressure (a proxy for soil water potential) was measured

with a pressure chamber in the early morning before the

lights were turned on. Trees were bagged during the night to

ensure the suppression of nocturnal transpiration. The Ppd was

measured for each tree in the CO2 and RH treatments and was

assumed to be constant throughout the treatment day. For the

drought treatment, the soil water potential was assessed from

‘predawn’ xylem pressures measured at the end of each drought

day as already described.

Testing the gain–risk model

The gain–risk model was run for each tree for the same set

of environmental conditions corresponding to the measurement

of the tree’s response to CO2, RH or drought. The predicted

transpiration rate (Etree), photosynthetic rate (A) and leaf xylem

pressure (Pleaf ) were compared with experimental observations

to evaluate the model performance in predicting the stomatal

responses to environmental cues. The comparison was quanti-

fied by calculating the mean absolute error (MAE) and mean

absolute percentage error (MAPE; mean absolute difference as

a percentage of the observed mean) for each comparison of A,

Etree and Pleaf for each treatment. Errors were equally weighted

across the three variables by studentizing each value (subtract-

ing the observed mean and dividing by the observed standard

deviation). Model performance per treatment (CO2, RH, soil

drought) was averaged from the MAPE for the A, Etree and Pleaf

response obtained for each treatment. Model performance per

variable was the variable’s MAPE averaged over all treatments.

The overall model performance was evaluated by the MAPE

averaged across all three variables and treatments.

Comparison with an empirical model

For comparison with the widely used empirical approach for

modeling plant water status and gas exchange, a standard

version of Ball–Berry–Leuning–Medlyn-type model was used

(Ball et al. 1987, Leuning 1995, Medlyn et al. 2011). For the

empirical model, stomatal conductance, gs, was predicted as

gs = g0 + 1.6A
Ca

•
(
1 + g1√

D

)
•

(
Psoil − Pmin

Pmax − Pmin

)
, (1)

where Ca is atmospheric [CO2], D is the leaf-to-air vapor

pressure deficit, g0, g1, Pmin and Pmax are four parameters

Tree Physiology Volume 39, 2019
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Figure 1. Observations and gain–risk model predictions in the CO2, humidity and drought treatments. The blue numbers show the observations while
the red numbers show the model prediction of each tree (identification number from 1 to 10). Panels (A)–(C) show the observed and modeled
photosynthetic rate (A). Panels (D)–(F) show the observed and modeled tree transpiration (Etree). Panels (G)–(I) show the observed and modeled
leaf xylem pressure (Pleaf ). The VPD is the vapor pressure deficit in the air.

fitted to the data and Psoil is the soil water potential (predawn

leaf xylem pressure was the proxy for Psoil). Standard empirical

stomatal conductance models lack a soil moisture term (e.g.,

the right-hand bracketed term; Ball et al. 1987, Leuning 1995,

Medlyn et al. 2011), which is added to account for drought

stress in large-scale ecosystem models (Trugman et al. 2018b).

Equation 1 without the soil moisture term is consistent with

the WUEH (Cowan and Farquhar 1977) assuming that RuBP

regeneration governs the photosynthesis and marginal water

use efficiency is independent of Ca and Psoil. The solution of Eq.

1 must also satisfy the physiological relationship between gs and

A, which was assumed to be identical to the gain function for

consistency with the gain–risk model (gs and A were calculated

from the intersection of the A–Ci curve and Eq. 1). Similarly, gs

was linked to Etree and Pleaf as dictated by the risk function.

The fitting parameters were optimized to minimize the sum

of studentized MAE (measured versus modeled A, Etree and

Pleaf ; values were studentized by subtracting the observed mean

and dividing by the observed standard deviation) for combined

[CO2], RH and drought treatments. Once parameterized, Eq. 1

was numerically solved for the gs and associated A, Etree and

Pleaf that satisfied the gain and risk function specific to each tree

and measurement period. The code for the empirical model is

available at https://github.com/Yujie-WANG/Published-Codes-

Yujie-WANG.

Results

Plant traits and model inputs

Mean Vcmax for each tree ranged from 12.8 to 96.6 μmol m−2 s−1

and mean Jmax ranged from 24.0 to 203.0 μmol m−2 s−1. Jmax

was linearly correlated with Vcmax (R
2 = 0.992, N = 43) with a

ratio of 1.86 (see Figure S2 available as Supplementary Data at

Tree Physiology Online). Trees no. 3, 5 and 7 had significantly

lower leaf area to basal area ratio averaging 2648 m2 m−2

compared with the rest of the trees, which averaged 5663

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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m2 m−2, and the model was parameterized accordingly. The

average percentage of tree hydraulic resistance in root, stem

and leaf pathways was 53.7%, 24.3% and 22.0%, respectively.

Estimated rhizosphere conductance was 6 × 108 times the

Kmax of each tree (yielding an average rhizosphere resistance

of 36.2% over the full range of soil water potential from zero

to the value at which gas exchange would cease). The Kmax

of each tree ranged from 560 to 1970 kg h−1 MPa−1 m−2.

Roots and leaves were more vulnerable to cavitation than

the stems with the P50 (xylem pressure at 50% loss of

conductance) of −1.14 MPa and −1.10 MPa, respectively,

compared with the −1.97 MPa in stems. The traits used

for modeling each tree can be found in the supplementary

data (see Table S2 available as Supplementary Data at Tree

Physiology Online).

Performance of the gain–risk model

In the CO2 experiment, as CO2 concentration was decreased

from high (800 ppm) to low (200 ppm), the observed

photosynthetic rate decreased (P < 0.001, linear regression,

Figure 1A, blue data), whole tree transpiration increased non-

significantly (P = 0.13, linear regression, Figure 1D, blue data)

and leaf xylem pressure became more negative (P = 0.03, linear

regression, Figure 1G, blue data). The gain–risk model tracked

these measured trends well (Figure 1A,D, and G, red data). The

standardized MAPE was 25.0%, averaged across all photo-

synthesis, transpiration and leaf xylem pressure comparisons

(Figure 2A, Table 2). The error was lower for the predictions

of transpiration and xylem pressure than for photosynthesis

(Table 2). The linear regression slope for modeled versus

measured transpiration was not significantly different from 1

(P = 0.14, Table 2), and the rest of the variable sets had

slopes significantly shallower than 1 (P < 0.001, Table 2).

In the RH treatment, as RH was decreased from high to low

(from 75% to 35%, corresponding to an atmospheric VPD

ranging from 0.79–2.06 kPa), the observed photosynthetic rate

decreased (P < 0.001, linear regression, Figure 1B, blue data)

while tree transpiration rate increased (P = 0.05, linear regres-

sion, Figure 1E, blue data) and leaf xylem pressure became

more negative (P = 0.84, Figure 1H, blue data). The gain–risk

model tracked these trends (Figure 1B, E and H red data) with

an overall MAPE of 21.9% (Figure 2B). The error was greatest

for photosynthesis and least for xylem pressure (Table 2). The

linear regression slope for each modeled versus measured

variable set (i.e., A, Etree, Pleaf and All) was significantly lower

than 1 (P < 0.001, Table 2).

In the soil drought treatment, as predawn xylem pressure

fell from −0.5 MPa to −2.3 MPa during the drought, the

observed photosynthesis, transpiration and leaf xylem pressure

fell (P < 0.001, linear regression, Figure 1C, F and I, blue data).

These trends were predicted by the gain–risk model (Figure 1C,

F and I, red data), but the percentage error was greater at

41.9% (Figure 2C). The percentage error was larger for

photosynthesis and transpiration than xylem pressure (Table 2).

The larger percentage error in the drought treatment compared

with the CO2 and RH treatments resulted from the lower

mean photosynthesis and transpiration rates measured under

drought stress. In terms of average absolute value of the

error, the drought treatment was comparable to the [CO2] and

RH treatments. The linear regression slopes for the modeled

versus measured transpiration and leaf xylem pressure were not

significantly different from 1 (P = 0.58 and 0.13, respectively,

Table 2), but the slopes for photosynthesis and combined

variable set were significantly lower than 1 (P < 0.001,

Table 2).

Pooling the CO2, RH and soil drought treatments, the overall

MAPE for the gain–risk model was 26.8% (Figure 2D), with

more error in the photosynthesis prediction (38.1%) than the

xylem pressure prediction (14.5%). Transpiration MAPE was

intermediate (27.8%, Table 2). The model predictions fell close

to the 1:1 line that was also within the 95% confidence limits

of the regression. A linear regression of the studentized model

prediction versus observations had slope lower than 1 for each

treatment, each variable and combined treatments (P < 0.01,

Figure 2A–D, Table 2).

Comparison with the empirical model

Pooling across all treatments and variables, the gain–risk

model predicted observed tree responses more skillfully

(MAPE = 26.8%) than the Ball–Berry–Leuning–Medlyn

empirical model (MAPE = 37.5%; Figure 2D and H). On a

per treatment basis, the gain–risk model gave lower errors for

all the [CO2], RH and drought responses (Figure 2A–C, E–G).

Per variable, the gain–risk model better predicted the pho-

tosynthesis, whole-tree transpiration and leaf xylem pressure

for combined treatments. The empirical model only performed

slightly better for photosynthesis in the [CO2] treatment and

whole-tree transpiration in the drought treatment (Table 2).

A linear regression of the studentized empirical fitting had

slope lower than 1 for each treatment and combined treatments

(P < 0.001, Figure 2E–H, Table 2). Per variable, only the linear

regression for leaf xylem pressure in the RH, drought and all

treatments combined showed slopes not significantly different

from 1 (P = 0.34, 0.91 and 0.76, respectively, Table 2). In the

RH treatment, the empirical model underestimated A, Etree and

Pleaf as the modeled values were below the 1:1 line (Figure 2F).

Discussion

The gain–risk optimization model was able to capture the [CO2],

air humidity and soil drought responses in novel conditions,

suggesting that patterns of tree-level gas exchange are consis-

tent with an optimization of carbon gain and hydraulic risk. The

gain–risk model showed better overall predicting power than

Tree Physiology Volume 39, 2019
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Figure 2. Comparison of model predictions of studentized photosynthesis (A, green circle), transpiration (Etree, blue square) and leaf xylem pressure
(Pleaf , red triangle) versus experimental observations. Panels (A)–(D) show the gain–risk model predictions for CO2, RH, drought and all treatments,
respectively. Panels (E)–(H) show the empirical model fittings for CO2, RH, drought and all treatments, respectively. Solid black lines are the 1:1
relationship. Dashed lines are the regression lines. Dotted lines are the 95% confidence intervals for the linear regression. The mean absolute
percentage error and the regression statistics are listed in Table 2.

the empirical model, which had the advantage of freely tuning

four parameters to best fit the data. The only parameter adjusted

post-hoc in the gain–risk approach was the rhizosphere conduc-

tance, which is a difficult trait to measure. This trait selectively

influences the model under drought conditions because only

in drying soil does rhizosphere hydraulic conductance become

limiting (Sperry et al. 1998, Sperry and Love 2015, Wolfe et al.

2016). Thus, the post-hoc adjustment of the rhizosphere con-

ductance had a minimal influence on the good fits observed

in the well-watered CO2 and RH treatments. The advantage of

having all model parameters associated with identifiable traits

is that this makes it easier to assign a value and uncertainty to

them a priori when true predictions are required (as opposed

to the hind-casting that is possible during model validation).

One can also better understand the physiological basis for

uncertainties in model projections when all inputs are linked

to trait and process. At the same time, it is important to

restrict the model to well-understood trait and process, or

risk regression to post-hoc fitting that becomes equivalent to

the empirical approach. For example, it can be conceptually

useful to incorporate phloem transport in an optimization model,

but this approach has the downside of adding a suite of

currently poorly known parameters (Nikinmaa et al. 2013,

Huang et al. 2018).

The present results add to the prior validations of the gain–

risk algorithm in controlled plantation experiment with aspen

(Populus tremuloides; Venturas et al. 2018), and meta-analysis

of gas exchange data from a variety of species (Anderegg et

al. 2018). The work adds to this body of literature and is the

first testing of the model’s CO2 response to both elevated and

decreased CO2 concentrations. The overall error (26.8% for

all treatments) was comparable to that for the Venturas et al.

(2018) study (27.9% for control and drought treatments).

Although the percentage error was higher for the drought

treatment (41.9%), this was owing to lower mean values

rather than to a greater absolute error. The MAEs for

water birch (A: 2.83, Etree: 135.52 and Pleaf : 0.23 for

drought treatment, units in Table 1) were comparable to

the MAEs for aspen in the Venturas study (A: 2.3, Etree:

151.2 and Pleaf : 0.4, units in Table 1). An advantage of

the growth chamber experiments was the ability to isolate

the model error for each individual driver ([CO2], RH and

soil drought). Similar absolute error values indicated that the

gain–risk model represented all responses with equal fidelity

(Table 2).

The slope of the model predictions and observations in

Figure 2D was significantly lower than 1, suggesting that

the model either underestimated gas exchange rates under

Tree Physiology Online at http://www.treephys.oxfordjournals.org
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Table 2. The comparison of gain–risk model and empirical model predictions. MAE (units for A, Etree and Pleaf reported in Table 1) and MAPE

stand for mean absolute error and mean absolute percentage error, respectively. The row ‘slope’ denotes the slope of the regression between

observed values (x) and modeled values (y). The row ‘slope = 1’ denotes the P-value for the linear regression slope being different from 1.

Units as in Table 1.

Treatment/Model Predicted

A Etree Pleaf All

CO2/Gain–risk MAPE 41.1% 17.8% 16.2% 25.0%

MAE 4.25 78.83 0.18

Slope 0.62 ± 0.11 0.81 ± 0.12 0.25 ± 0.15 0.61 ± 0.08

Slope = 1 0.00 0.14 0.00 0.00

R2 0.527 0.606 0.140 0.441

CO2/Empirical MAPE 40.7% 49.1% 26.7% 38.8%

MAE 4.21 217.29 0.30

Slope 0.63 ± 0.11 0.36 ± 0.16 −0.23 ± 0.24 0.33 ± 0.12

Slope = 1 0.00 0.00 0.00 0.00

R2 0.539 0.155 0.059 0.094

RH/Gain–risk MAPE 31.5% 23.5% 10.7% 21.9%

MAE 3.50 111.66 0.12

Slope 0.45 ± 0.08 0.25 ± 0.07 0.71 ± 0.11 0.43 ± 0.07

Slope = 1 0.00 0.00 0.02 0.00

R2 0.563 0.287 0.708 0.332

RH/Empirical MAPE 46.9% 41.7% 14.0% 34.2%

MAE 5.20 198.18 0.16

Slope 0.45 ± 0.07 0.37 ± 0.12 0.85 ± 0.16 0.51 ± 0.07

Slope = 1 0.00 0.00 0.34 0.00

R2 0.632 0.237 0.651 0.382

Drought/Gain–risk MAPE 43.0% 65.4% 17.3% 41.9%

MAE 2.83 135.52 0.23

Slope 0.44 ± 0.10 0.91 ± 0.17 0.85 ± 0.10 0.71 ± 0.09

Slope = 1 0.00 0.58 0.13 0.00

R2 0.421 0.544 0.849 0.483

Drought/Empirical MAPE 45.5% 59.2% 21.7% 42.1%

MAE 2.99 122.56 0.29

Slope 0.36 ± 0.08 0.45 ± 0.12 1.02 ± 0.20 0.55 ± 0.09

Slope = 1 0.00 0.00 0.91 0.00

R2 0.446 0.373 0.658 0.381

All/Gain–risk MAPE 38.1% 27.8% 14.5% 26.8%

MAE 3.58 106.58 0.17

Slope 0.56 ± 0.07 0.54 ± 0.05 0.79 ± 0.07 0.60 ± 0.04

Slope = 1 0.00 0.00 0.01 0.00

R2 0.463 0.541 0.690 0.506

All/Empirical MAPE 44.2% 47.6% 20.7% 37.5%

MAE 4.17 181.80 0.25

Slope 0.51 ± 0.06 0.25 ± 0.07 0.95 ± 0.15 0.51 ± 0.05

Slope = 1 0.00 0.00 0.76 0.00

R2 0.479 0.153 0.455 0.304

favorable conditions or overestimated them under stressful

conditions. The results suggest that the latter case applies

to the water birch because the model predicted leaf xylem

pressure became overly negative under stressed conditions

(Figures 1F and I, and 2C). This behavior would occur if the

measured leaf VC was more resistant than the actual leaf VC. An

overly resistant leaf VC would lead to more negative predicted

Pleaf and higher predicted transpiration at any soil moisture

condition (Figures 1F and I, and 2C). The measured leaf VC

was for leaf xylem only, and so excluded potential declines in

leaf hydraulic conductance in the extra-xylary flow path. The

response of extra-xylary hydraulic conductance to water stress

requires more quantitative investigation (Bartlett et al. 2014,

Meinzer et al. 2016, Scoffoni et al. 2017) and may improve

model performance. Incorporating the mesophyll conductance

in the model may also improve the predictions (Dewar et al.

2018, Flexas et al. 2008), but there are still knowledge gaps

that prevent incorporating it in the gain–risk model such as how
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to quantifiy the change of mesophyll conductance in response

to the environment.

The empirical approach performed less satisfactorily com-

pared with the trait-based gain–risk model, especially in pre-

dicting Etree and Pleaf in the CO2 and RH treatments (Table 2).

The underperformance of the empirical model was despite

the advantage of fitting model parameters to the observed

data set and using the same linkage between gs, A, Etree and

Pleaf employed in the gain–risk model (i.e., the gain and risk

functions). Either the model ‘parameters’ are not constants

as intended or the empirical equation itself does not fully

capture the complexity of the stomatal response to CO2, RH

and soil drought. Even if an empirical approach had been as

successful as the gain–risk model, as was the case in the aspen

study of Venturas et al. (2018), the gain–risk model has the

advantage of being parameterized by measurable traits with

known uncertainties. The gain–risk approach also capitalizes on

the known linkage between stomatal behavior and physiological

traits (Pataki et al. 1998, Sperry 2000, Hubbard et al. 2001,

Santiago et al. 2004).

While the gain–risk model can predict well the stomatal

behavior based on measured traits, the predictions may only

be relevant for short timeframes when these measured traits

stay unchanged. Acclimation such as changes in leaf respiration,

leaf area per basal area, photosynthetic capability and rooting

depth has the potential to change plant response over time to

the long-term changes in [CO2], temperature and other factors

(Eissenstat et al. 2000, Ainsworth and Long 2005, Guswa

2008). The fact that the gain–risk model is trait-based allows

for modeling these acclimation processes as they become better

understood. In conclusion, the gain–risk model appears to hold

promise for improving predictions of forest health in response

to a changing climate.
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4.8 Supporting Information
4.8.1 Table of experimental design

Table 4.S1: Default setting of the growth chamber and the settings for the treatments. Row
[CO2] was the chamber CO2 concentration; row RH was the relative humidity; row Soil
indicated whether the trees were watered (W for watered, NW for not watered); row PAR
was the light intensity; row Tair was the chamber air temperature; row Day time was the
time frame for light in the chamber. Column Default and Treatment stages showed the
default settings of the chamber. The Ppd and Pleaf indicated that predawn water potential
and leaf xylem pressure were measured for that treatment. The Ppd was measured once
for the [CO2] and RH treatment. The Ppd was measured after each stage in the drought
treatment. PAR was set at a constant 1000 µmol m−2 s−1 during the day and air temperature
was set at 25 ◦C throughout the experiment.

Treatment Default Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Note
[CO2]

400
800

600
400

300
200 Same day Ppd

(ppm) Pleaf Pleaf Pleaf for all stages
RH

55
75

65
55

45
35 Same day Ppd

(%) Pleaf Pleaf Pleaf for all stages

Soil W
W NW NW NW NW Different Ppd

Ppd, Pleaf Ppd Ppd, Pleaf Ppd Ppd, Pleaf for all stages
PAR (µmol

1000 Constant
m−2 s−1)
Tair (◦C) 25 Constant

Day time 8 am to 6pm Constant
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4.8.2 Table of traits for each tree

Table 4.S2: Traits for each tree. Top: vulnerability curves for root, stem, and leaf elements.
The “B” and “C” are parameters of the Weibull function used to fit vulnerability curve data.
Resistance partition is the resistance of each segment as a percentage of the whole plant
resistance. The VCs were same for each tree. Below: tree-specific traits. In the column
“Note”, C, D, and P denoted if the tree was used in the CO2, RH, and drought treatment,
respectively.

Vulnerability Curves:

B C Resistance Partition
Root 1.879 2.396 53.7%
Stem 2.238 9.380 24.3%
Leaf 1.897 2.203 22.0%

Traits for each individual:

Tree Note
Root Kmax Stem Kmax Leaf Kmax Kmax Vcmax Jmax LaBa

kg h−1 MPa−1 m−2 µmol m−2 s−1

1 CD 2589.516 5725.834 6304.174 1389.961 54.947 107.505 5663
2 CDP 3478.758 7692.092 8469.033 1867.275 69.840 128.280 5663
3 C 1043.779 2307.963 2541.080 560.264 59.719 104.973 2648
4 CP 2893.333 6397.621 7043.815 1553.039 64.618 118.730 5663
5 C 1451.979 3210.557 3534.840 779.371 50.968 68.376 2648
6 CP 2241.282 4955.832 5456.397 1203.041 96.578 202.987 5663
7 D 2161.774 4780.028 5262.836 1160.364 12.794 24.004 2648
8 DP 2494.907 5516.638 6073.847 1339.178 67.316 126.116 5663
9 DP 2055.616 4545.295 5004.394 1103.382 65.145 122.198 5663
10 DP 1869.949 4134.758 4552.390 1003.723 75.456 141.540 5663
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4.8.3 Example of tree response to the environment
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Figure 4.S1: Xylem water potential (Px) and percentage loss of conductance (PLC) in root,
stem, and leaf at different environmental conditions. Panel A and B: responses of Px and
PLC to atmospheric [CO2] at a soil water potential of -0.68 MPa (mean value for six trees).
Panel C and D: responses to atmosphere vapor pressure deficit (VPD) for a soil water
potential of -0.72 MPa (mean value for six trees). Panel E and F: responses to soil water
potential. The black line in each panel represents when whole tree transpiration is 0 meaning
only gravity governs the xylem water potential drop. Vulnerability curve parameters of
root, stem, and leaf are from Table 4.S1. The Kmax, Vcmax, Jmax, and LaBa are the average
values of the ten trees from Table 4.S1. Stem height is set to 1 m.
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4.8.4 Correlation of Vcmax and Jmax
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Figure 4.S2: Correlation between maximal carboxylation rate at 25 ◦C (Vcmax) and maximal
electron transport at 25 ◦C (Jmax). The dashed line plots the linear regression (y = 1.86x, R2

= 0.992).



CHAPTER 5

A CANOPY PROFIT MAXIMIZATION MODEL IDENTIFIES

MAJOR DRIVERS FOR OPTIMAL LEAF INVESTMENT

AND PREDICTS CONSERVED CI/CA RATIO AND

REALISTIC SPATIAL PATTERNS OF

GREENNESS IN UNITED STATES

5.1 Summary
Leaf area and photosynthetic capacity are very plastic traits and presumably coordinate

with other less plastic physiological traits to maximize the fitness of trees in a highly variable

environment. However, quantifying the trade-offs involved in optimal leaf investment is

challenging. Based on recent advances in trait-based optimal stomatal control models, we

proposed a canopy profit maximization model that optimizes leaf area and photosynthetic

capacity simultaneously. We evaluated how the less plastic plant traits, including hydraulic

safety and efficiency, leaf traits, root zone water supply, and environmental conditions,

impact optimal leaf investment. Our model predicted that, besides the environment,

leaf construction costs and root depth are key traits that drive optimal leaf investment.

However, out of these important environmental and physiological variables, only leaf

construction costs impacted optimal leaf photosynthetic capacity. Our model also predicted

conserved Ci/Ca ratio (Ci: leaf internal [CO2], Ca: atmospheric [CO2]) within each different

tested site, agreeing with typically observed Ci/Ca homeostasis. The Ci/Ca conservation

disappeared across habitats, probably due to unrealistically constant traits used for every

site. The optimal leaf investment model further showed great potential in predicting

spatial greenness patterns in the United States. Last, we highlighted the knowledge gaps

that need to be filled to better understand and model how trees optimize leaf investment

mechanistically.

• Keywords: gas exchange, leaf area, construction cost, optimization model,
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photosynthetic capacity, root depth, traits

5.2 Introduction
Current earth system models struggle to predict similar and reliable magnitudes of

climate change and its impact (Anav et al., 2013; Arora et al., 2013; Jones et al., 2013). The

divergent model predictions are mainly due to the highly uncertain land surface component,

which is also the biggest carbon sink for the last two decades (Beer et al., 2010; Quéré et

al., 2018). The uncertainty arises partly from highly variable environmental factors that are

boundary conditions for land surface models (LSMs), for example, soil moisture (Powell

et al., 2013; Trugman, Medvigy, et al., 2018). Another problem with current LSMs is that

they use a statistical regression-based approach to model terrestrial carbon and water

fluxes (Walker, Hanson, et al., 2014). There is no guarantee that regression parameters from

the past will apply to a climatically different future. One way to improve the LSMs is to

incorporate a physiology-based model of plant gas exchange which can account for the

acclimation of plant traits spatially and temporally (e.g., Sperry et al., 2019).

Leaf area (LA) and leaf photosynthetic capacity are two highly plastic traits that exhibit

intraspecific acclimation and have a great impact on CO2 and H2O fluxes (Pettorelli et al.,

2005). Leaf photosynthetic capacity is often represented by maximal carboxylation rate

and maximal electron transport at 25 ◦C (Vcmax and Jmax, respectively). The Vcmax and

Jmax are coupled (Medlyn et al., 2002; Wang et al., 2019), and thus we use Vcmax as the

proxy for leaf photosynthetic capacity in this study. In theory, plants ought to optimize

LA and Vcmax depending on both other less plastic (more species-specific) plant traits

(Santiago et al., 2004) and the local environment (Trugman, Anderegg, Wolfe, et al., 2019).

However, due to the elusive understanding of how trees optimize leaf allocation, leaf

investment is often modeled by empirical scaling relationships and sometimes arbitrary

optimization assumptions (Trugman, Anderegg, Sperry, et al., 2019). The empirical or

arbitrary parameterizations for modeling leaf investment are challenged by global climate

change due to potential changes of both species-specific plant traits (Guswa, 2008; Zhou et

al., 2016) and the environment (IPCC, 2014). Moreover, the predicted increasing drought

frequency and severity impose threaten trees with greater mortality risk (Allen et al., 2010;

Hartmann et al., 2015, 2013), potentially resulting in changes of forest composition and
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stand density and further necessitating a mechanistic understanding and modeling of

optimal leaf investment.

Mechanistic trait-based gas exchange models do not require empirical parameterizations

and can realistically capture feedbacks between traits and responses (Mencuccini, Manzoni,

& Christoffersen, 2019; Sperry et al., 2017; Wolf et al., 2016). Such models are an ideal

platform for exploring the acclimation of leaf investment. These trait-based models perform

well in predicting stomatal behavior, especially under drought and elevated CO2 (Anderegg

et al., 2018; Venturas et al., 2018; Wang et al., 2019). They also enable modeling shift of

optimal leaf investment because changes in species-specific traits feed back to water use

strategy in these models, which is not possible in a strictly regression-based model. For

instance, if water availability becomes more limiting, the species will reduce its LA to save

water (Trugman, Anderegg, Sperry, et al., 2019), and the lower LA impacts the stomatal

behavior because the water supply to each leaf increases. In contrast, regression-based

models cannot capture this change in water use strategy because the plasticity of plant traits

like LA does not play a role in these regression parameters (Ball et al., 1987; Leuning, 1995;

Medlyn et al., 2011).

Models usually optimize LA and Vcmax separately due to a gap in understanding how

the two traits coordinate. As a result, optimal LA or Vcmax obtained is a local optimum

other than a global optimization of the two. The main reason for optimizing LA and Vcmax

separately is that the optimizations operate at different scales, typically with LA at tree

level (Trugman, Detto, et al., 2018) and Vcmax at leaf level (Quebbeman & Ramirez, 2016;

Smith et al., 2019). To force coordination between the two, Sperry et al. (2019) assumed that

leaves maintain an average Ci/Ca ratio of 0.7 under favorable conditions (Ci is the [CO2]

in the leaf and Ca is the atmospheric [CO2]), an assumption that constrains the set of LA +

Vcmax combinations. From this set, the authors selected a single optimal combination that

maximized the return on leaf investment. The Sperry et al. (2019) model predicted realistic

LA + Vcmax combination but also highlighted a question that has puzzled gas exchange

researchers for years: why is Ci/Ca ratio conserved? Moreover, species-specific traits such

as xylem vulnerability to drought and root depth (Trugman, Anderegg, Wolfe, et al., 2019;

Venturas et al., 2017) may also have a great impact on leaf investment and are subject to

change with the environment. Yet, how plant traits coordinate to optimize leaf investment
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has not been well understood and requires a more in-depth investigation.

Here, we advance the trait-based tree model to optimize LA and Vcmax simultaneously

by maximizing the return on leaf investment without additional constraints such as a

conservative Ci/Ca ratio. We use our model to answer the following questions: (1) How

does leaf investment depend on species-specific traits which may be assumed to be less

plastic? (2) How does leaf investment within a given species depend on the environment?

(3) Is the Ci/Ca ratio conserved across species and the environment? If yes, why? (4)

How well does the optimization theory perform in predicting leaf investment? (5) What

knowledge gaps need to be filled to gain a better understanding of leaf investment?

5.3 Materials and Methods
5.3.1 Canopy profit maximization hypothesis

We hypothesized that a tree maximizes its growing season canopy profit (GCP,

normalized per basal area, BA; see Table 5.1 for symbols’ descriptions). The GCP is the

difference between canopy net primary productivity per BA (CNPP) and leaf construction

costs per BA (LCC):

max(GCP) = max(CNPP− LCC). (5.1)

We did not account for stem and root respiration rates because root and stem biomass

were held constant in our simulations, and their respiration rates neither influence nor are

influenced by leaf investment. We maximized GCP rather than CNPP because investment

into leaves (i.e., LCC) represents the one-time investment for building leaves and is

irreversible. The CNPP throughout a growing season was computed using

CNPP =
LA
BA
·
∫
(A(t)− R(t)) · dt, (5.2)

where A(t) and R(t) are average gross photosynthetic rate and leaf respiration rate per

LA at time t, respectively. The one-time investment LCC consists of costs for leaf carbon

biomass (LCBM, Poorter et al., 2006) and nutrient supply (NS, Evans & Clarke, 2019):

LCC = LCBM + NS. (5.3)

Note that both LCBM and NS are one-time costs but are amortized over the leaf life

span (TLL), and the continued respiration costs after building the leaves are part of CNPP
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as described in equation 5.1. For simplicity, we assumed that (1) trees grow leaves to

maintain LA at the beginning of a growing season and all the leaves have the same Vcmax,

(2) throughout the growing season, LA and Vcmax stay constant, and (3) when aged leaves

drop, new leaves grow immediately to maintain the constant LA.

The LCBM compromises only the carbon part of organic matter in leaves (i.e., the

carbohydrates such as fibers and noncarbohydrates such as proteins). The inorganic matter

such as minerals and other nutrients in the noncarbohydrates such as N and P are not part

of LCBM, and the energy paid for these nutrients belongs to NS. The LCBM is proportional

to LA per BA:

LCBM = investC ·
LA
BA

, (5.4)

where investC is a constant biomass cost factor. It should be noted that there is an exchange

rate between leaf dry mass and fixed CO2 by the leaves (e.g., 1 gram of carbohydrate

translates to 1/30 mole of CO2). Further, the LCBM accounts for all the leaf carbon biomass

costs in the growing season with length TGS, and hence is proportional to TGS/TLL. Thus,

the investC is related to leaf dry mass per area (LMA), TLL, and TGS:

investC = fMC · LMA · TGS

TLL
, (5.5)

where fMC converts leaf mass to equivalent moles of fixed CO2. The fMC depends on organic

matter contents of leaves. To simplify the modeling, we used the final term “investC” in the

present study rather than fMC, LMA, TLL, and TGS as in equation 5.5.

The NS includes energy paid for taking up nutrients from the soil and transporting

them to the leaves, and metabolic costs for assembling the organic matter. The difference

between LCBM and NS in our model is that fixed CO2 is used as material for LCBM but as

consumable (energy) for NS. Similar to LCBM, NS is proportional to LA:BA and nutrient

content per LA (NN):

NS = investN · NN ·
LA
BA

, (5.6)

where investN is the carbon cost factor per NN. Though the nutrients include all chemical

elements except for H, C, and O, we used the nitrogen content as a proxy for NN in the

present study. Concerning leaf life span, investN is also proportional to TGS/TLL:
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investN = fNC ·
TGS

TLL
, (5.7)

where fNC converts NN to equivalent moles of fixed CO2. Due to the difficulty to quantify

NS, models often neglect it (e.g., Sperry et al., 2019; Trugman, Detto, et al., 2018). However,

a separate NS term from LCBM is necessary to produce realistic leaf investment patterns at

varying soil nutrient availability. To simplify the modeling, we used the final term “investN”

in the present study rather than fNC, TLL, and TGS as in equation 5.7.

We estimated NN from Vcmax, assuming the total nutrients are related to the nitrogen

content of photosynthetic machinery. We modeled Jmax using Jmax = 1.67 ·Vcmax Medlyn et

al. (2002), and thus Jmax did not impact NN Vcmax correlation in our model. An advantage

of linking NN and Vcmax is that all costs related to nutrients (NS and R(t)) can be directly

computed from Vcmax. Importantly, we assumed a nonlinear correlation between NN and

Vcmax, which tends to saturate at an upper limit (Vlimit; Grassi & Bagnaresi, 2001; Manter et

al., 2005; Simioni et al., 2004). This saturation results from ever-greater self-shading and

resistance to intracellular liquid-phase CO2 diffusion as more chloroplasts are added to leaf

cells (more NN). In reality, plants seldom achieve a Vcmax higher than 120 µmol CO2 m−2 s−1

(Smith et al., 2019). Thus, we incorporated an arbitrarily nonlinear correlation between

Vcmax and NN:

NN =

Vcmax + Vlimit · log
(

Vlimit

Vlimit −Vcmax

)
2

, (5.8)

and NN increased exponentially with Vcmax when approaching Vlimit. The Vlimit ought to

vary with species (depending on leaf thickness, light exposure, leaf orientation, etc.). We

used a default Vlimit = 100 µmol CO2 m−2 s−1 in our model.

Like Sperry et al. (2019), we modeled mature trees where trunk diameters and canopy

heights were constant along with the constant biomass of root and stem systems. The

optimal leaf investment was calculated by varying LA and Vcmax independently and finding

the optimal combination that maximized GCP. The computation of CNPP is detailed in the

next Section. A full version of the model written in Julia (1.2.0, NumFocus) is available at

https://github.com/Yujie-WANG/Published-Codes-Yujie-WANG.
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5.3.2 Tree model

We used a trait-based tree model to calculate CNPP. All model variables had

environmental or physiological identities (see Table 5.1), so we could optimize (acclimate)

LA:BA and Vcmax within a given set of less plastic species-specific traits for a given

environment. We did not allow the species-specific traits to vary within a growing season,

and the impacts from varying these traits were tested below. The tree model resembles

the Sperry model (Sperry et al., 2017; Venturas et al., 2018) in most details, so here we only

highlight the differences.

Briefly, starting from 1:00 AM on the first day of a growing season, we computed hourly

net CO2 assimilation rate, A(t)− R(t), assuming gas exchange was at steady state. If the

zenith angle was higher than 85 ◦ (before sunrise and after sunset) or the photosynthetically

active radiation was below 10 µmol m−2 s−1, we treated the period as “night” time, but

“day” time otherwise. During the “night,” we did not partition tree canopy to different layer

and computed leaf temperature for the whole canopy, assuming no nighttime transpiration

due to a lack of mechanistic understanding (Yu et al., 2019). Leaf respiration at night (Rnight)

was computed as a function of leaf temperature and Vcmax (Sperry et al., 2017) and scaled to

give the canopy respiration.

During the “day,” we partitioned the hemispherical tree canopy to a sunlit layer and a

shade layer based on the zenith angle and leaf area index (LAI = LA:GA (ground area) in

our model, Campbell & Norman, 1998). The LA was portioned to LAsl and LAsh, where

subscripts “sl” and “sh” represent sunlit and shade layer, respectively. Leaf temperatures

and net assimilation rates (Asl and Ash) were computed from the transpiration rate for each

layer with the classic photosynthesis model (Farquhar et al., 1980).

To better estimate the photosynthetic rate at low leaf diffusive conductance (GH for

H2O and GC for CO2 ), we incorporated a dynamic intercellular airspace limitation to

photosynthesis (IAL). Usually, GC is computed using GH/1.6, where the constant 1.6

converts diffusion coefficients of CO2 and H2O in air. This conversion (GC = GH/1.6)

accounts for CO2 diffusion from air to substomatal cavity, but neglects the extra CO2

diffusion in gas-phase through the intercellular airspace and in liquid-phase to the

chloroplasts. Due to limited quantitative knowledge of liquid-phase diffusion, we only

mechanistically modeled the gas-phase component (i.e., IAL). The IAL varies with leaf
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anatomical traits (such as intercellular air fraction, stomatal frequency, lower epidermis

thickness, and spongy mesophyll thickness) and scales with GH (Chapter 2; Wang et al.,

in review). With minor modification to the classic photosynthesis model, we modeled

IAL as a correction factor between GC versus GH correlation via two species-specific

parameters depending on leaf anatomy—con (default at 0.65) and pow (default at 0.37).

The IAL-corrected correlation takes the following form:

GC =
GH

1.6 · (con · Gpow
H )

, (5.9)

where the constant 1 represents stomatal limitation to CO2 diffusion form air to substomatal

cavity, and con · Gpow
H represents IAL relative to stomatal limitation. Note that as we

accounted for the IAL, the Vcmax used in our model represents the apparent value at

palisade cell walls rather than at substomatal cavity as is typically done (Niinemets et al.,

2009). Though an apparent Vcmax at palisade cell walls is still not the true photosynthetic

capacity in the chloroplasts (Knauer et al., 2020), it allows us to mechanistically account for

the intercellular limitation, whereas the apparent Vcmax at substomatal cavity cannot.

Further, we did not allow GH being higher than its physiological limit (Sperry & Love,

2015; Sperry et al., 2016):

GH ≤ Gmax ·

273.15 +
Tair + Tleaf

2
298.15


1.8

, (5.10)

where Gmax is the maximal GH when stomata are fully open at 25 ◦C (default at

0.8mol m−2 s−1), Tair and Tleaf are air and leaf temperature in ◦C, and the power term

after Gmax corrects for the temperature effect on the diffusive coefficient of H2O vapor in air

(Nobel, 2009). The Gmax results from leaf anatomical traits and is mainly driven by guard

cell dimensions, stomatal frequency, and lower epidermis thickness (Franks & Beerling,

2009). We highlighted IAL and Gmax because they may significantly influence leaf gas

exchange efficiency.

We used a recently developed stomatal control model (Chapter 3; Wang et al., in review)

to model optimal stomatal behavior. The Wang model posits that a plant maximizes the

difference between instantaneous photosynthesis (i.e., A) and the penalty (Θ) associated

with the stomatal opening (Θ = A · E
Ecrit

):
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max
(

A ·
(

1− E
Ecrit

))
, (5.11)

where E is tree transpiration rate, and Ecrit is the maximal E allowed by hydraulic transport

capacity. The Wang model differs with the Sperry model (Sperry et al., 2017) in that the

Sperry model defines the penalty as Θ = Amax ·
(

1− K
Kmax

)
, where Amax is the maximal

A while ranging E from 0 to Ecrit, K is the soil-plant hydraulic conductance, and Kmax is the

maximal K when E = 0. The Wang model has been tested with three datasets (Anderegg et

al., 2018; Venturas et al., 2018; Wang et al., 2019) and performs equally well as the Sperry

model while being computationally more efficient (Chapter 3; Wang et al., in review).

Furthermore, we expanded equation 5.11 to optimize transpiration partition between sunlit

and shade layers:

max
(
(LAsl · Asl + LAsh · Ash) ·

(
1− Esl + Esh

Ecrit

))
, (5.12)

where Esl and Esh are transpiration rates of sunlit and shade layers, respectively. For each

realistic combination of Esl and Esh (not violating equation 5.10), we computed GH for

each layer with GH,sl =
Esl

LAsl · Dsl
and GH,sh =

Esh

LAsh · Dsh
(D is leaf-to-air vapor pressure

deficit relative to atmospheric pressure for each layer depending on leaf temperature), GC

with equation 5.9, and Asl and Ash from the Farquhar et al. (1980) photosynthesis model.

By varying Esl and Esh independently, we found optimal Esl and Esh combination that

maximized equation 5.12. An example of this optimal partition can be found in Supporting

Information. The canopy net CO2 assimilation rate was given as LAsl · Asl + LAsh · Ash.

To simplify the root zone water budget, we assumed a one-layer root system with a

depth of Hroot, and the soil within the rooting depth was at its field capacity at the beginning

of a growing season. We also assumed that the xylem was fully functional at the beginning

of a growing season. Each of root, stem, and leaf was divided into 20 elements, and each

element had its “memory” of previous drought history as a result of xylem cavitation

(Anderegg et al., 2015; Sperry & Tyree, 1988). At each hourly time step, we calculated the

optimal transpiration rate and xylem pressure profile in the tree (including the impact

from gravity). If xylem pressure got more negative than the “memory” of each element,

the “memory” was updated. The drought “memory” influenced future gas exchange via

altering Ecrit of the tree (equation 5.12). After each time step, we updated the soil water
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storage based on tree transpiration, soil evaporation, and precipitation during that hour.

Throughout the growing season, we did not allow xylem refilling or growth, so the drought

legacy persisted till the end of the growing season (24:00 PM of the last day). We calculated

CNPP using

CNPP =
1

BA
·
(∫

day
(LAsl · Asl + LAsh · Ash)−

∫
night

(
LA · Rnight

))
. (5.13)

For each simulation of a growing season, at optimal LA and Vcmax we also calculated

GCP (equation 5.1) and photosynthetically weighted growing season Ci/Ca ratio:

Ci

Ca
=

∫
day

(
LAsl · Asl ·

Ci,sl

Ca
+ LAsh · Ash ·

Ci,sh

ca

)
∫

day (LAsl · Asl + LAsh · Ash)
(5.14)

where Ci,sl and Ci,sl are Ci for sunlit and shade layers, respectively. This weighted Ci/Ca

ratio ought to be more representative of carbon discrimination recorded in stem or leaf than

a nonweighted average.

5.3.3 Weather and soil data

Default weather conditions were hourly weather data for 35 consecutive years (1971

to 2005) at Flagstaff, Arizona, USA (data from Sperry et al., 2019). The mean annual

precipitation at this site averaged 575 mm and supported an extensive forest of Pinus

ponderosa and Populus tremuloides. The mean annual temperature was 7.7 ◦C. The default

CO2 concentration was set to 400 ppm. The 35-year weather data were intended to

represent realistic interannual variations, to which trees would acclimate over the long

term. To obtain the long-term optimal investment, we used the 35-year average of optimal

investment determined for each individual year. The default weather data were altered as

described below to determine the influence of climate parameters on long-term optimal

leaf investment.

We used a soil texture of clay loam for this site and held it constant during the

simulations. As we assumed soil was at its field capacity at the beginning of each growing

season, the total amount of water available was the sum of soil water and growing season

precipitation. The Hroot and GA:BA in our model determined water availability from

nongrowing season precipitation via root zone soil volume, and GA:BA determined that
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from growing season precipitation. For each simulation of optimal leaf investment, Hroot

and GA:BA were held constant, and hence the soil water plus precipitation was constant

for each simulation.

5.3.4 Influence of species-specific traits and environment on
optimal leaf investment

We conducted a sensitivity analysis to determine how long-term acclimation of optimal

leaf investment (the 35-year mean) depended on settings for what we assumed to be less

plastic and more species-specific traits, including plant hydraulic traits and leaf traits

besides photosynthetic capacity and LA:BA. For a given set of species-specific traits, we also

determined how the acclimation to optimal leaf investment depended on environmental

factors, including water availability and atmospheric conditions. For this sensitivity

analysis, we varied only one species-specific or environmental parameter (other than

LA and Vcmax ) while holding all other parameters at defaults. We solved for the optimal LA

+ Vcmax combination and computed GCP and growing season Ci/Ca ratio assuming optimal

LA + Vcmax for the given weather record. To evaluate any dependency of the sensitivity

analysis on the default Flagstaff weather data, we repeated the analysis for weather data

from three other sites of contrasting climate, and the sites were Durango (wetter and cooler,

Colorado), Hattiesburg (wetter and warmer, Mississippi), and Trinity (drier and warmer,

California). See Sperry et al. (2019) and supporting information about these sites.

5.3.4.1 Plant hydraulic traits

The safety and efficiency of trees are typically described by a Weibull function k =

kmax · exp

(
−
(
−P

B

)C
)

, where k is the hydraulic conductance for an element at xylem

pressure of P, kmax is the maximal hydraulic conductance when there is no cavitation in

the xylem (efficiency), and B and C are Weibull parameters that describe xylem resistance

to cavitation (safety). The soil-plant hydraulic conductance per BA (i.e., K) was affected

by k (note that K included a rhizosphere component besides the plant vascular system,

Sperry et al., 1998, 2016). Higher B, C, and k each meant more resistant (safer) to drought,

more sensitive to drought, and more hydraulically conductive, respectively. We used

uniform B and C for root, stem, and leaf without segmenting them (Sperry et al., 2016).

We used different maximal hydraulic conductance of root (kroot per BA), stem (kstem per
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BA), and leaf (ksla per LA), and kept the ratio of the three fixed (meaning the three changed

simultaneously by the same magnitude). We varied each of B, C, and K (including kroot,

kstem, and ksla) to 20%, 60%, 150%, and 200% of its default value, and determined how these

settings influenced the long-term optimal LA and Vcmax. To test whether Weibull B and C

impacted the optimal leaf investment, we tested the sensitivity to Weibull B at different

Cs of 1 and 3 (default at 5). To examine whether wood and leaf had different impacts on

optimal leaf investment, we also tested the scenario where only the wood (kroot and kstem)

or leaf partition (ksla) was varied to 20%, 60%, 150%, and 200% of its default value.

5.3.4.2 Leaf traits

The evaluated leaf traits included leaf construction costs measured by investC and

investN, intercellular airspace limitation measured by IAL con (assuming pow constant at

its default), and leaf maximal diffusive conductance Gmax. A higher investC, investN, con,

and Gmax each meant more costs in leaf carbon, more costs in leaf nutrient supply, more

limited intercellular resistance, and less limited leaf-level gas exchange. We varied each of

investC, investN, con, and Gmax to 20%, 60%, 150%, and 200% of its default value.

5.3.4.3 Water supply

Water supply to the plant in our model was represented by GA:BA and Hroot. We varied

GA:BA and Hroot independently to 20%, 60%, 150%, and 200% of their default values (less to

more water availability). Note that increasing GA:BA also resulted in better light availability

for the trees and that increasing Hroot also resulted in slightly more gravitational pressure

drop in roots.

5.3.4.4 Environmental conditions

Climate change causes changes in all environmental conditions for trees, typically with

drier air, higher air temperature, and elevated CO2. However, changing any environmental

condition inevitably results in a shift of the others, making it difficult to tease apart

the impact of each environmental cue. Therefore, we arbitrarily modified the 35-year

weather data by changing only one environmental condition at a time, and inspected how

atmospheric vapor pressure deficit (VPD), air temperature, and atmospheric [CO2] drive

optimal leaf investment. Though the modified weather data were not realistic, they allowed
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us to isolate the impact of each environmental cue. The VPD was varied to 60%, 80%, 120%,

and 140% (wetter to drier air) of its hourly value while holding the air temperature (Tair)

constant. The Tair was varied to −2, +2, +4, and +6 ◦C for each hourly value while holding

the air relative humidity constant. The atmospheric [CO2] was varied to 200, 300, 600, and

800 ppm.

5.3.5 Predicting continental-level optimal leaf investment

To better examine whether the model predicts realistic leaf investment patterns at

the continental level, we further tested our model with more realistic climatic data

from different sites in the lower 48 states of the United States. We evenly gridded

the lower 48 states per 1 ◦ both latitudinally and longitudinally. The mean growing

season temperature (MGST) ranged from 8 to 32 ◦C, and the mean growing season

precipitation (MGSP) ranged from 10 to 1200 mm. For all grid locations, we extracted

the 3-hour weather data from year 1978 to 2016 from 0.25 × 0.25 gridded weather

(http://hydrology.princeton.edu/data/pgf/v3/0.25deg/3hourly/; Sheffield et al., 2006)

and interpolated it to hourly data. Precipitation was obtained from the daily record and

added at midnight (0:00 AM of the next day). We optimized LA:BA and Vcmax for each year

of each site for our default setting (i.e., plant the same tree with the same density across the

United States), and at the optimum we calculated GCP and growing season Ci/Ca.

5.4 Result
A unique global optimal LA + Vcmax combination that maximized GCP existed for

each simulated growing season (an example of the optimum at the year 2005 shown in

Fig. 5.1, white “+”). The trade-offs underlying this optimal pairing are best seen from the

influence of one variable at a time. At a fixed photosynthetic capacity (represented by Vcmax

and Jmax), for example, Vcmax = 50 µmol CO2 m−2 s−1, increasing LA from zero initially

caused GCP to increase because there was plenty of light and water available. However,

if LA was increased too much, the GCP started to decrease because photosynthetic gains

were compromised by self-shading and increasing leaf respiratory and construction costs.

Alternatively, at a fixed LA:BA (e.g., 2000 m2 m−2), increasing Vcmax from zero caused GCP

to increase because of the stimulation of photosynthesis. However, if Vcmax was increased
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too much the GCP started to decline because respiration costs and nutrient supply costs

began to increase faster than the gain in photosynthesis.

We would like to highlight that there was a very broad region where GCP was only

slightly lower than the maximum (GCP > 85% of the maximum), for example, the dark

green region in Fig. 5.1, where LA:BA ranged from about 800 to 2100 m2 m−2 and Vcmax

ranged from 43 to 95 µmol CO2 m−2 s−1. The weighted Ci/Ca in the region was also

conserved from 0.70 to 0.77. When we plotted the rest 34 optima for different growing

seasons at Flagstaff (the year 1971 to 2004), they all fell in this flat region (gray circles in Fig.

5.1). This suggested the average optimal leaf investment (mean of the scatters in Fig. 5.1)

was able to capture the long-term acclimation to the environment.

5.4.1 Hydraulic traits

Plant hydraulic safety and efficiency traits had a minor impact on the optimal LA +

Vcmax combination, Ci/Ca, and GCP (Fig. 5.2). When Weibull B varied from 60% to 200%

of its default value, no significant change with optimal LA + Vcmax combination, Ci/Ca, or

GCP was found (Fig. 5.2a,b). However, when Weibull B decreased to 20% of the default,

5.2 decreased by 6–7% whereas optimal LA did not change (red region in Fig. 5.2a), Ci/Ca

decreased from 0.70 to 0.55, and GCP decreased by 26% (red symbols in Fig. 5.2b). When

we varied Weibull B at a Weibull C of 1 and 3, we found similar patterns as Fig. 5.2a and

5.2b. When the Weibull C varied from 20% to 200% of the default value, no significant

change for any of LA + Vcmax combination,Ci/Ca, or GCP was found (Fig. 5.2c,d). When

kroot, kstem, and ksla all varied from 60% to 200% of their default values, no significant change

in LA + Vcmax combination, Ci/Ca, or GCP was found (Fig. 5.2e,f). However, when kroot,

kstem, and ksla all decreased to 20% of the default, optimal LA increased by about 10%, Vcmax

decreased by about 6% (red region in Fig. 5.2e), Ci/Ca decreased from 0.70 to 0.61, and

GCP decreased by about 17% (red symbols in Fig. 5.2f). When we varied only kroot and

kstem, optimal LA + Vcmax combination, Ci/Ca, and GCP were still insensitive to hydraulic

conductance. When we varied only ksla, optimal LA increased and Vcmax decreased when

ksla decreased to its 20%, suggesting the shift of LA + Vcmax at low hydraulic conductance

in Fig. 5.2e was due to the leaf component. We found similar patterns at the other three

sites (Durango, Hattiesburg, and Trinity, see Section 5.7.2).
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5.4.2 Leaf traits

Optimal LA + Vcmax combination, Ci/Ca, and GCP were sensitive to the leaf traits tested

(Fig. 5.3). When investC increased from 20% to 200% of the default value, LA and Vcmax

decreased significantly (Fig. 5.3a), Ci/Ca increased from 0.62 to 0.80 (Fig. 5.3b), and GCP

decreased by more than 90% (Fig. 5.3b). When investN increased from 20% to 200% of its

default value, LA and Vcmax decreased significantly (Fig. 5.3c), Ci/Ca increased from 0.66

to 0.72 (Fig. 5.3d), and GCP decreased by about 32% (Fig. 5.3d). When IAL became more

limiting (as con increased in equation 5.9), optimal LA did not change and Vcmax decreased

slightly (Fig. 5.3e), whereas both Ci/Ca and GCP slightly decreased (Fig. 5.3f). A change in

Gmax had a minor impact on LA + Vcmax combination, Ci/Ca, or GCP, except for when Gmax

was low (0.16 mol m−2 s−1, Fig. 5.3g,h). At the low Gmax, LA increased (Fig. 5.3g), whereas

Vcmax, Ci/Ca, and GCP decreased (Fig. 5.3h). We found similar patterns at the other three

sites (Section 5.7.2).

5.4.3 Water supply

Plant water supply influenced optimal LA:BA, Ci/Ca, and GCP but had a minor impact

on optimal Vcmax (Fig. 5.4). When GA:BA increased, optimal LA:BA increased (Fig.

5.4a), and GCP increased linearly (Fig. 5.4b) because higher GA:BA resulted in higher

precipitation and light availability to the plant. However, optimal Vcmax and Ci/Ca were

not sensitive to changes in GA:BA (Fig. 5.4a,b). When Hroot was increased (giving the

plant more access to stored soil water), the optimal LA:BA, Ci/Ca, and GCP increased (Fig.

5.4c,d), whereas optimal Vcmax was not sensitive (Fig. 5.4c). We found similar patterns at

the other three sites (Section 5.7.2).

5.4.4 Environmental conditions

Environmental conditions, including atmospheric VPD, Tair, and [CO2], had a great

impact on optimal leaf investment. Drier air resulted in slightly lower LA and Vcmax (Fig.

5.5a), and lower GCP and growing season Ci/Ca (Fig. 5.5b). Higher Tair resulted in lower

LA but no change in Vcmax (Fig. 5.5c), and slight lower GCP and Ci/Ca (Fig. 5.5d). A higher

Ca increased optimal LA significantly and Vcmax less significantly compared to LA (Fig.

5.5e). The GCP increased at higher Ca, but Ci/Ca decreased (Fig. 5.5f). We found similar

patterns at the other three sites (Section 5.7.2).
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5.4.5 Conserved Ci/Ca ratio

The photosynthesis-weighted growing season Ci/Ca at optimal leaf investment was

conserved for species at a given site. Take Flagstaff as an example, though with variations

among growing seasons, the Ci/Ca ratio ranged from 0.62 to 0.75 and averaged 0.70 for

the default 35-year weather data. Further, varying GA:BA (Fig. 5.4b), Tair (keeping RH

unchanged, Fig. 5.5d), and Ca (Fig. 5.5f) did not influence much the Ci/Ca ratio. However,

increasing VPD alone (keeping Tair unchanged) resulted decreased Ci/Ca, but Ci/Ca was

still in the conserved range (Fig. 5.5b). Overall, for a given set of less plastic species-

specific traits, optimal leaf investment of the more plastic LA:BA and Vcmax resulted in

a conserved Ci/Ca for a given site. In comparison, optimal LA:BA and Vcmax showed

much higher variation, with LA:BA ranged from 200 to 3000 m2 m−2, and Vcmax from 60 to

100 µmol CO2 m−2 s−1 (Fig. 5.2–5.5). Similar patterns were found in the other three sites

(Section 5.7.2).

The Ci/Ca was sensitive to leaf construction costs and root depth (soil water supply),

which impacted optimal leaf investment. In general, when soil water supply remained

constant, Ci/Ca increased with lower LA:BA and lower Vcmax (Fig. 5.3b,d) because of

better water supply and lower CO2 demand. When soil water supply increased, Ci/Ca

decreased with lower LA:BA as a result of water limitation (Fig. 5.4d). Further, more limited

leaf intercellular airspace also decreased Ci/Ca even though LA:BA and Vcmax were not

impacted (Fig. 5.3f).

The Ci/Ca conservation varied among different tested sites. Comparing to the

conservative 0.60–0.80 range for Flagstaff, the Ci/Ca ratio was conserved at 0.63–0.82

for weather from Durango, 0.60–0.82 for Hattiesburg, and 0.50–0.70 for Trinity (Section

5.7.2). However, the nonconserved Ci/Ca ratio among sites did not bias the commonly

assumed Ci/Ca homeostasis because we used identical traits for every site, and the more

realistic species-specific traits ought to reduce the variation of Ci/Ca across habitats (see

Discussion).

5.4.6 Prediction of continental-level leaf investment

Our model predicted realistic spatial patterns of leaf investment across the lower 48

states of the United States (Fig. 5.6). Our model predicted lower LA:BA for the climate in
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Mountain west regions and highest LA:BA in the east (Fig. 5.6c), agreeing with the MGSP

patterns (Fig. 5.6a). The optimal LA:BA increased with higher MGSP and decreased with

higher MGST. The LA:BA patterns agreed with the spatial NDVI (normalized difference

vegetation index) and EVI (enhanced vegetation index) patterns (MODIS, MOD13Q1 series

data; Didan, 2015). As to optimal Vcmax, our model predicted lower Vcmax in Southeast and

Mountain west (Fig. 5.6d), which was likely due to the higher temperature in these regions

that caused higher respiratory costs (Fig. 5.6b). Optimal Vcmax decoupled with MGSP or

MGST, and was highest in the region where MGSP ranged from 200 to 500 mm and MGST

ranged from 15 to 20 ◦C. Our model also predicted a lower Ci/Ca ratio from 0.55 to 0.70

in the Mountain West region but a higher ratio from 0.70 to 0.86 in East United States (Fig.

5.6e). The Ci/Ca at optimal leaf investment increased with lower MGST and higher MGSP,

a pattern found in carbon discrimination record (Cernusak et al., 2013; Prentice et al., 2014).

Our model predicts a higher GCP in East United States and Pacific coastal but a lower GCP

in Mountain West (Fig. 5.6f). The GCP at optimal leaf investment increased with MGSP but

showed no obvious trend with MGST.

5.5 Discussion
For each growing season at a given site, there is a unique optimal LA:BA and Vcmax

combination that maximizes return on leaf investment. Though optimal leaf investments

vary for each growing season, they tend to fall into a conserved region where the return on

investment does not differ much from the optima for that particular growing season (Fig.

5.1). To simplify the modeling of leaf investment, we assumed all other traits constant are

species-specific and do not change in a growing season. According to our model, optimal

leaf investment is influenced by both the species-specific traits, but is only sensitive leaf

construction costs related traits (both investC and investN) and root depth among those

tested. Leaf investment is also sensitive to environmental conditions. While optimal LA:BA

is significantly impacted by all the listed important traits and environmental cues, optimal

Vcmax is only sensitive to investC and investN, and slightly sensitive to atmospheric [CO2].

The rest of the plant traits (including Weibull B and C, hydraulic conductance, IAL con, and

Gmax) have a minor impact on optimal LA:BA and Vcmax.

Species-specific traits and environmental conditions impact photosynthesis-weighted
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growing season Ci/Ca ratio at optimal LA + Vcmax. Despite the impacts, the Ci/Ca ratio at a

given site is often conserved (Fig. 5.2–5.5, Section 5.7.2), agreeing with typically observed

homeostasis in Ci/Ca ratio across species and habitats (Voelker et al., 2016). Our results

suggest that a conserved Ci/Ca ratio may be an evolutionary target for plants. However, it

should be aware that nonoptimal LA + Vcmax combinations may also result in Ci/Ca in the

conservative range, and thus research needs to constrain optimal LA + Vcmax combination

with plant productivity rather than simply a conserved Ci/Ca ratio (as did by Trugman,

Detto, et al. (2018), Sperry et al. (2019), and the present study).

Potential deficits with our analysis were that our default plant settings were not realistic

for the changing environment and the sensitivity analysis was done by varying one

particular trait at a time. However, it was necessary to do the sensitivity analysis in

this unrealistic way to tease apart the major drivers for optimal leaf investment. Further,

our results that optimal leaf investment is only sensitive to leaf construction costs and

root depth narrows the problem to these particular traits. Despite using constant default

plant traits for different regions in the lower 48 states of the United States, our model still

predicted broadly realistic spatial patterns for leaf investment and Ci/Ca ratio, showing

great potential of improving future projections of leaf investment. Below we discuss what

needs to be done to better project leaf area both spatially and temporally.

5.5.1 Why leaf investment is not sensitive to plant hydraulics

Though plant hydraulic safety and efficiency traits are essential to many stomatal control

models (Chapter 3; Anderegg et al., 2018; Sperry et al., 2017) and are important indicators of

plant water stress (Venturas et al., 2018), these hydraulic traits were not found to materially

influence optimal leaf investment unless the plant was very vulnerable to cavitation or

inefficient in conducting water. It may be presumed that if a tree is more resistant to drought

or conductive, it should put on more leaves. However, when the tree becomes more resistant

while holding everything else constant including LA, the optimal water use will increase,

for example, the risk in hydraulic integrity decreases as in the Sperry model (Sperry et al.,

2017) and the Ecrit increases as in equation 5.11 (Chapter 3; Wang et al., in review). Thus,

for the same sized trees, a more resistant tree will drain the soil faster and obtain more

photosynthesis at the beginning of the growing season, but photosynthesis will be lower
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later in the season as soil is drier (examples of soil water content for different Bs at optimal

LA + Vcmax in Supporting Information). Similarly, a more hydraulically efficient tree also

drains the soil faster, and putting more leaves ought to make it worse (examples of soil

water content for different Ks at optimal LA + Vcmax in Supporting Information). These

tradeoffs may explain why optimal leaf investment is not sensitive to plant hydraulic traits

in a given environment when other traits are constant.

This finding simplifies the modeling of optimal leaf investment projection because

a −40% to +100% change in hydraulic traits has almost no impact on the optimal leaf

investment. Though a recent meta-analysis suggests plant hydraulics as well as leaf

economics drive leaf : wood area ratio (Mencuccini, Rosas, et al., 2019), it is likely due to

the correlation between plant hydraulic conductance and leaf costs, which according to

our model is the actual driver (Fig. 5.3). However, knowledge of how hydraulic safety

and efficiency traits acclimate in the future is still crucial because these traits influence

susceptibility to water stress and drought-induced mortality (Hammond et al., 2019;

Venturas et al., 2018).

5.5.2 Difficult-to-measure key plant traits

Though our model highlights that the key plant trait drivers for optimal leaf investment

are leaf construction costs and rooting depth, these are extremely difficult to measure.

Therefore, mechanistically incorporating optimal leaf investment into gas exchange models

and hence quantitatively predicting optimal leaf investment for novel environmental

conditions are challenging. Here we analyze what can be done to fill the gaps in

understanding optimal leaf investment.

The investC is relatively easier as most of the parameters involved have been widely

reported, such as LMA, TGS, and TLL. However, it should be aware that LMA needs

to be partitioned to organic and inorganic matter, the former of which needs to be

further partitioned to carbohydrate and noncarbohydrates (equation 5.5). For simplicity,

it can be assumed that all the noncarbohydrates are proteins, and then a unit mass of

noncarbohydrates converts to n/M moles of equivalent CO2, where n is the number

of C elements and M is the molar weight of the average amino acid (Young & Pellett,

1994). Further, carbohydrate and noncarbohydrate contents will help resolve intra- and
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interspecies variation.

The investN is harder to quantify due to the difficulty of isolating costs related to nutrient

uptake, transport, and metabolism and correlating the nutrients with Vcmax. There are two

potential sources of nitrogen supply to leaves: stored nitrogen in the tree and free nitrogen

in the soil (including the N-fixers), and nutrient uptake costs are different for the two

sources as the former is cheaper. Therefore, for a multiyear plant, nitrogen in the plant may

be the greatest nitrogen source for leaves. In this scenario, the challenge is to partition the

stored nitrogen to leaves, and investN will not be constant but dependent on LA unless

there is sufficient nutrient supply. For smaller plants such as annuals, it is wise to assume

little nitrogen storage and attribute all the nitrogen supply to the soil. As to the transport

and metabolism, more research needs to be done to tease apart nutrient uptake related

respiration from basic respiration. A great amount of work has been done to correlate leaf

nitrogen content with Vcmax. Though most of these studies have tended to assume linear

correlation between the two, a nonlinear correlation is often found as the intercept of linear

regression is above zero (Clearwater & Meinzer, 2001; Crous et al., 2008; Han & Chiba, 2009;

Ripullone et al., 2003; Walker, Beckerman, et al., 2014). Further, the upper limit (Vlimit) ought

to vary within and among species due to leaf anatomy, and we should not vary Vcmax or

Jmax freely from 0 to infinity for any species (e.g., equation 5.8).

Root depth and distribution are not often measured, despite its importance for plant

water supply (Love et al., 2019; Sperry et al., 1998). In our model, we vary Hroot solely

while keeping other traits unchanged. However, in reality, more investment into Hroot also

means less to stem, and thus hydraulic conductance in the stem ought to decrease. This

opens another optimization question, namely what is the optimal root and stem investment

partition, which is beyond the scope of this study. However, as our model suggests that

changes in root and stem hydraulic conductance have a minor impact on optimal leaf

investment (Fig. 5.2), varying Hroot alone would not result in much error. Better resolution

of root profile (soil water supply) and its incorporation to large-scale modeling will advance

the modeling of gas exchange (Fan, 2015; Fan et al., 2017, 2019).

Though optimal leaf investment is less sensitive to other traits like plant hydraulic traits,

IAL con, and Gmax, these traits do influence GCP and Ci/Ca ratio. Moreover, as all these

traits are related to anatomy, it is very unlikely that these traits are independent of other
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anatomy-related traits such as investC. For example, when leaf intercellular air fraction

increases while other anatomical traits are held constant, leaf LMA and hence investC ought

to decrease; and meanwhile, IAL con will be lower (Chapter 2; Wang et al., in review). Also,

lower plant hydraulic efficiency is often coupled with higher costs in leaves (Mencuccini,

Rosas, et al., 2019), because it is not necessary to build very efficient xylem when leaf water

demand is low. Therefore, it is also essential to learn how plant traits coordinate with each

other, especially those traits related to construction costs. Further, more complicating is how

all these impacting traits change at different environmental conditions. Though research

has to neglect or assume no change in these traits due to our current elusive understanding

(Sperry et al., 2019; Trugman, Anderegg, Sperry, et al., 2019), more investigations to resolve

these mysteries will advance the land surface models.

5.5.3 Model predictions and experimental observations

5.5.3.1 Drought

Our model predicts lower LA:BA but only a minor change in Vcmax with drier air (Fig.

5.5) or lower soil water supply (Fig. 5.4) while holding all other traits constant. The

predicted lower LA:BA agrees with typical observations of lower LA (Trugman, Anderegg,

Wolfe, et al., 2019; Yang et al., 2018). However, the predicted almost constant Vcmax confronts

the often observed declining Vcmax for drought-stressed plants (Smith et al., 2019; Zhou et

al., 2014, 2016). The possible reasons are (1) our model optimizes Vcmax for a whole growing

season and does not allow it to vary in the growing season, and thus cannot predict a

variable Vcmax, decreasing or increasing. (2) The Vcmax in our model represents the apparent

value at palisade cell walls, whereas Vcmax reported is the apparent value at the substomatal

cavity, which does not account for intercellular airspace limitation. In theory, when stomata

close more, intercellular resistance increases (Chapter 2; Wang et al., in review), and the

apparent Vcmax at the substomatal cavity would decrease (Knauer et al., 2020; Niinemets et

al., 2009). Thus, it is possible that the Vcmax decline in these studies is due to IAL rather than

a decline in real photosynthetic capacity (Zhou et al., 2014). (3) Increase in leaf construction

costs will result in lower Vcmax (Fig. 5.3), and leaves tend to be more expensive during

drought as LMA increases (Fernández & Reynolds, 2000; Poorter et al., 2009).
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5.5.3.2 Elevated CO2

Our model predicts higher LA:BA and Vcmax at elevated CO2 (Fig. 5.5c). The predicted

higher LA:BA corresponds with typically observed higher LA in the free-air CO2 enrichment

(FACE) experiments (Ainsworth & Long, 2005; Trugman, Anderegg, Wolfe, et al., 2019;

Tyree & Alexander, 1993). The predicted slightly higher Vcmax, however, contrasts with the

reported slightly lower Vcmax in these FACE experiments (Ainsworth et al., 2002; Ainsworth

& Long, 2005). The disagreement in Vcmax suggests there must be increasing costs related

to leaf construction (Fig. 5.3). Unfortunately, not all FACE experiments measured or

reported the construction costs related parameters (e.g., LMA, TLL, and nutrient availability).

However, studies that did report these parameters support our hypothesis as higher LMA

has been found in these FACE experiments (Ainsworth et al., 2002; Ainsworth & Long,

2005). Our model prediction of slightly higher Vcmax differs from the Sperry et al. (2019)

model, which predicted slightly lower Vcmax. The reason is that our model constrains the

optimum only by maximizing GCP, whereas the Sperry et al. (2019) model constrains the

optimum by maximizing GCP at a constant Ci/Ca ratio for favorable reference conditions.

As the Ci/Ca contours are hyperbolic shaped (dashed lines in Fig. 5.1), the Sperry et al.

(2019) model tends to predict higher LA:BA but lower Vcmax, while our model allows Vcmax

to vary independently. Though our model and the Sperry et al. (2019) model also differs in

that we have a nutrient supply costs, the ever-greater NS at higher Vcmax tends to limit the

increase of Vcmax in our model, and thus the different Vcmax trends between the models may

result from different model constraints.

5.5.3.3 PAR

The light availability also has a great impact on optimal leaf investment as shaded leaves

tend to have lower Vcmax (Anteb et al., 1996; Seemann et al., 1987; Yamori et al., 2010). Thus,

our assumption that all leaves have the same Vcmax, though a shortcut for modeling leaf

investment, neglects finer scale optimization within a tree among sunlit and shade leaves. A

more detailed model concerning the light environment of individual leaves is required for

this finer scale optimization. However, such a model would be computationally expensive

and hence may not be practical for the forest level or beyond.
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5.5.4 Is Ci/Ca ratio conserved?

Our model predicted conserved Ci/Ca ratio for a given site, and varying environmental

conditions did not influence much the conservation (Fig. 5.4, 5.5, Section 5.7.2). The

homeostasis in Ci/Ca, however, disappeared in the simulations across the lower 48 states of

the United States (Fig. 5.6). This was because we used the same default traits combinations

for all the grids. As the leaf construction costs are higher for drier environment (Fernández

& Reynolds, 2000; Poorter et al., 2009), our model prediction tends to underestimate the

Ci/Ca for drier areas but overestimate it for wetter areas. Thus, the Ci/Ca ratio ought to

be more conserved than predicted in Fig. 5.6e. Knowledge of how the plant traits vary

spatially will help address the Ci/Ca conservation more reliably.

5.5.5 Conclusion

Optimal leaf investment can be modeled with our canopy profit maximization model,

and optimal LA:BA and Vcmax are coordinated in a conserved region for a given long-term

climate. With the model, we conclude the following: (1) Optimal leaf investment is sensitive

to leaf construction costs and root depth. (2) Optimal leaf investment is environmental

conditions. (3) A conservative Ci/Ca ratio corresponds with the optimal LA:BA and Vcmax

for a given site though the conservation varies among sites. (4) Optimal leaf investment

model shows great potential predicting spatial patterns of leaf investment and is promising

to predict optimal leaf investment temporally. (5) More research needs to be done to fill

the gaps in how to quantify the key traits, how the traits coordinate, and how the traits

acclimate to the environment.
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Table 5.1: List of important symbols and their default values and units.

Symbol Description Default value (unit)
Leaf gas exchange

A Gross photosynthetic rate per LA (µmol CO2 m−2 s−1)
Ci Leaf internal [CO2] (ppm)
D Leaf-to-air vapor pressure deficit relative to

atmospheric pressure
(unitless)

E Tree transpiration rate per BA (kg H2O m−2 h−1)
Ecrit Maximal E at given soil moisture (kg H2O m−2 h−1)
GC Leaf diffusive conductance for CO2 per LA (mol m−2 s−1)
GH Leaf diffusive conductance for H2O per LA (mol m−2 s−1)
R Leaf respiration per LA (µmol CO2 m−2 s−1)

Tree traits
B Weibull parameter for tree vulnerability curve 2 (MPa)
BA Tree basal area 1 (m2)
C Weibull parameter for tree vulnerability curve 5
Gmax Maximal GH at 25 ◦C 0.8 (mol m−2 s−1)
Hroot Root depth 2 (m)
investC Leaf biomass cost factor 2.0 (mol m−2)
investN Leaf nutrient supply cost factor 0.04 (mol s µmol−1)
Jmax Maximal electron transport at 25 ◦C, 1.75 times

Vcmax

(µmol CO2 m−2 s−1)

kroot Root hydraulic conductance per BA 5000
(kg H2O h−1 m−2 MPa−1)

ksla Leaf hydraulic conductance per LA 2.0
(kg H2O h−1 m−2 MPa−1)

kstem Stem hydraulic conductance per BA 10000
(kg H2O h−1 m−2 MPa−1)

K Soil-plant hydraulic conductance per BA (kg H2O h−1 m−2 MPa−1)
Kmax Maximal K when E = 0 2500

(kg H2O h−1 m−2 MPa−1)
LA Leaf area 1500 (m2)
LCBM Leaf biomass costs per BA (mol m−2)
LCC Leaf construction cost per BA (mol m−2)
LMA Leaf dry mass per area (kg m−2)
NS Leaf nutrient supply cost per BA (mol m−2)
NN Nutrient investment per LA (µmol CO2 m−2 s−1)
TLL Leaf life span (day)
Vcmax Maximal carboxylation rate at 25 ◦C (µmol CO2 m−2 s−1)
Vlimit Anatomical limit to Vcmax due to chloroplasts

self-shading
100 (µmol CO2 m−2 s−1)

Site traits
Ca Atmospheric [CO2] 400 (ppm)
CNPP Canopy net primary productivity per BA (mol m−2)
GA Ground area per tree 500 (m2)
GCP Growing season canopy profit per BA (mol m−2)
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Table 5.1: continued

Symbol Description Default value (unit)
LAI Leaf area index, LA:GA 3
PAR Photosynthetically active radiation (µmol m−2 s−1)
TGS Growing season length (day)
VPD Atmospheric vapor pressure deficit (kPa)
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Figure 5.1: Growing season canopy profit (GCP, colored contour) and Ci/Ca ratio (dotted
lines) at different leaf area per basal area (LA:BA) and photosynthetic capacity (measured
by maximal carboxylation rate, Vcmax) for default model settings. The simulation was run
for the weather data of year 2005. The color bar plots the GCP per BA, and the inline
numbers represent photosynthetically weighted Ci/Ca ratio. The white plus identifies the
global optimal LA:BA and Vcmax combination that yields highest GCP at year 2005. The
gray circles plot the rest 34 optimal LA:BA + Vcmax combinations for weather data from year
1971 to 2004.
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Figure 5.2: The influence of hydraulic traits on the optimal leaf area per basal area
(LA:BA, y-axis of left panels) and photosynthetic capacity (Vcmax, x-axis of left panels)
combination. Also shown is the gross canopy profit (GCP, circles, left y-axis of right panels)
and photosynthetically weighted Ci/Ca ratio (triangles, right y-axis of right panels) at the
leaf investment optimum. (a) Optimal LA and Vcmax when varying Weibull B to 20% (red),
60% (shaded red), 100% (gray), 150% (shaded blue), and 200% (blue) of the default value.
The semiaxes of the ellipses represent the standard deviation (SD, N = 35) of the optimal
Vcmax horizontally and the SD of optimal LA:BA vertically. (b) The GCP and average Ci/Ca
at different Weibull Bs (color scheme same as (a)). The error bars plot the SD of the GCP
and Ci/Ca. (c) and (d) Sensitivity to the Weibull C from 20% to 200% of the default value,
which influences the rate of xylem cavitation with xylem pressure. (e) and (f) Sensitivity to
kroot, kstem, and ksla, which determines the plant’s hydraulic conducting efficiency, from 20%
to 200% of their default values.
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Figure 5.3: The influence of leaf traits on the optimal leaf area per basal area (LA:BA,
y-axis of left panels) and photosynthetic capacity (Vcmax, x-axis of left panels) combination.
Also shown is the gross canopy profit (GCP, circles, left y-axis of right panels) and
photosynthetically weighted Ci/Ca ratio (triangles, right y-axis of right panels) at the
leaf investment optimum. (a) Optimal LA and Vcmax when varying leaf biomass cost factor
(investC) to 20% (red), 60% (shaded red), 100% (gray), 150% (shaded blue), and 200% (blue)
of the default value. The semiaxes of the ellipses represent the standard deviation (SD, N =
35) of the optimal Vcmax horizontally and the SD of optimal LA:BA vertically. (b) The GCP
and average Ci/Ca at different investCs (color scheme same as (a)). The error bars plot the
SD of the GCP and Ci/Ca. (c) and (d) Sensitivity to the nutrient supply cost factor (investN)
from 20% to 200% of the default value, which influences the rate of xylem cavitation with
xylem pressure. (e) and (f) Sensitivity to intercellular airspace limitation (via IAL con)
from 20% to 200% of their default values. (g) and (h) Sensitivity to maximal leaf diffusive
conductance (Gmax) from 20% to 200% of their default values.
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Figure 5.4: The influence of water supply on the optimal leaf area per basal area (LA:BA,
y-axis of left panels) and photosynthetic capacity (Vcmax, x-axis of left panels) combination.
Also shown is the gross canopy profit (GCP, circles, left y-axis of right panels) and
photosynthetically weighted Ci/Ca ratio (triangles, right y-axis of right panels) at the
leaf investment optimum. (a) Optimal LA and Vcmax when varying ground area per BA
(GA:BA) to 20% (red), 60% (shaded red), 100% (gray), 150% (shaded blue), and 200% (blue)
of the default value. The semiaxes of the ellipses represent the standard deviation (SD, N =
35) of the optimal Vcmax horizontally and the SD of optimal LA:BA vertically. (b) The GCP
and average Ci/Ca at different GA:BAs (color scheme same as (a)). The error bars plot the
SD of the GCP and Ci/Ca. (c) and (d) Sensitivity to the root depth (Hroot) from 20% to 200%
of the default value, which influences the rate of xylem cavitation with xylem pressure.
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Figure 5.5: The influence of environmental conditions on the optimal leaf area per basal
area (LA:BA, y-axis of left panels) and photosynthetic capacity (Vcmax, x-axis of left panels)
combination. Also shown is the gross canopy profit (GCP, circles, left y-axis of right panels)
and photosynthetically weighted Ci/Ca ratio (triangles, right y-axis of right panels) at the
leaf investment optimum. (a) Optimal LA and Vcmax when varying hourly atmospheric
vapor pressure deficit (VPD) to 60% (red), 80% (shaded red), 100% (gray), 120% (shaded
blue), and 140% (blue) of the default value. The semiaxes of the ellipses represent the
standard deviation (SD, N = 35) of the optimal Vcmax horizontally and the SD of optimal
LA:BA vertically. (b) The GCP and average Ci/Ca at different VPDs (color scheme same
as (a)). The error bars plot the SD of the GCP and Ci/Ca. (c) and (d) Sensitivity to the
atmospheric [CO2] (Ca) from 200 to 800 ppm (from red to shaded red, gray, shaded blue,
and blue). (e) and (f) Sensitivity to the photosynthetically active radiation (PAR) from 20%
to 100% the default value (from lighter to darker gray).
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Figure 5.6: Spatial patterns of environment and leaf investment in the lower 48 states of
the United States. (a) Spatial pattern of mean growing season precipitation (MGSP, unit
see Table 5.1). (b) Mean growing season temperature (MGST). (c) Optimal leaf area per
basal area (LA:BA) when we hold the tree traits at the default settings. (d) Optimal leaf
photosynthetic capacity (measured by maximal carboxylation rate at 25 ◦C, Vcmax). (e)
Growing season photosynthesis weighted Ci/Ca at optimal leaf investment. (f) Growing
season canopy profit (GCP).
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5.7 Supporting Information
5.7.1 Supplemental figures
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Figure 5.S1: Correlation between leaf nutrient investment (NN) and maximal carboxylation
rate (Vcmax) at 25 ◦C. The NN (solid line) is the average of Vcmax (dotted line) and Vlimit ·

log
(

Vlimit

Vlimit −Vcmax

)
(dashed line, where Vlimit is the anatomical limitation to Vcmax due to

chloroplast self-shading).
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Figure 5.S2: Example of optimal transpiration partition between the sunlit layer (Esl) and
shade layer (Esh). The colored contours plot the maximization criterion (equation 5.12 in
main text, unit: µmol CO2 m−2 s−1), and the red symbol plots the optimal combination of
Esl and Esh.



135

10 15 20 25 30
MGST ( )

0

200

400

600

800

1000

1200

M
GS

P 
(m

m
)

Figure 5.S3: Climate information for the sites used in the present study. The x-axis and
y-axis each plots the mean growing season temperature (MGST) and precipitation (MGSP).
Each gray point represents a gridded site in the lower 48 states of the United States. The
blue circles are the sites used for sensitivity analysis, and they are Durango, Flagstaff, Trinity,
and Hattiesburg (from left to right).
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Figure 5.S4: The influence of Weibull parameter combination on the optimal leaf area per
basal area (LA:BA, y-axis of left panels) and photosynthetic capacity (Vcmax, x-axis of left
panels) combination. Also shown is the gross canopy profit (GCP, circles, left y-axis of right
panels) and photosynthetically weighted Ci/Ca ratio (triangles, right y-axis of right panels)
at the leaf investment optimum. (a) Optimal LA and Vcmax when varying Weibull B to 20%
(red), 60% (shaded red), 100% (gray), 150% (shaded blue), and 200% (blue) of the default
value at a Weibull C of 1. The semiaxes of the ellipses represent the standard deviation (SD,
N = 35) of the optimal Vcmax horizontally and the SD of optimal LA:BA vertically. (b) The
GCP and average Ci/Ca at different Weibull Bs (color scheme same as (a)). The error bars
plot the SD of the GCP and Ci/Ca. (c) and (d) Sensitivity to the Weibull B a Weibull C of 3.



137

70.0 72.5 75.0 77.5 80.0 82.5 85.0
1100

1200

1300

1400

1500

1600

1700 (a)

0.2X 0.6X 1.0X 1.5X 2.0X
15.0

17.5

20.0

22.5

25.0

27.5

30.0 (b)
kroot and kstem

70.0 72.5 75.0 77.5 80.0 82.5 85.0
Vcmax ( mol m 2 s 1)

1100

1200

1300

1400

1500

1600

1700 (c)

0.2X 0.6X 1.0X 1.5X 2.0X
15.0

17.5

20.0

22.5

25.0

27.5

30.0 (d)
ksla

GCP Ci/Ca

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

Figure 5.S5: The influence of hydraulic segmentation on the optimal leaf area per basal
area (LA:BA, y-axis of left panels) and photosynthetic capacity (Vcmax, x-axis of left panels)
combination. Also shown is the gross canopy profit (GCP, circles, left y-axis of right panels)
and photosynthetically weighted Ci/Ca ratio (triangles, right y-axis of right panels) at the
leaf investment optimum. (a) Optimal LA and Vcmax when varying the root and stem
hydraulic conductance (kroot and kstem) to 20% (red), 60% (shaded red), 100% (gray), 150%
(shaded blue), and 200% (blue) of the default value. The semiaxes of the ellipses represent
the standard deviation (SD, N = 35) of the optimal Vcmax horizontally and the SD of optimal
LA:BA vertically. (b) The GCP and average Ci/Ca at different kroots and kstems (color scheme
same as (a)). The error bars plot the SD of the GCP and Ci/Ca. (c) and (d) Sensitivity to the
leaf area specific conductance (ksla) from 20% to 200% of the default value.
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Figure 5.S6: Optimal leaf investment at different climatic conditions for the default plant
traits. The x-axis and y-axis plot the mean growing season temperature (MGST) and
precipitation (MGSP). Each small scatter point represents a gridded site in the lower 48
states of the United States. The blue circles are the sites used for sensitivity analysis, and
they are Durango, Flagstaff, Trinity, and Hattiesburg (from left to right). (a) Pattern of
optimal leaf area per basal area (LA:BA) as shown in the color bar next to it. (b) Optimal
leaf photosynthetic capacity measured by the maximal carboxylation rate at 25 ◦C (Vcmax).
(c) The growing season photosynthesis weighted Ci/Ca ratio at optimal leaf investment. (d)
The growing season canopy profit (GCP) at optimal leaf investment.
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Figure 5.S7: Examples of hourly soil water content curves in the year 2005 at different
hydraulic traits: (a) vulnerability curve Weibull B and (b) hydraulic efficiency K. Dark red,
light red, gray, light blue, and dark blue each plots the soil water content curve at 20%, 60%,
100%, 150%, and 200% of the default value of B and K. Leaf area and photosynthetic capacity
are optimized at the given setting. Decreased soil water content is due to evapotranspiration,
and increased soil water content is due to precipitation.
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5.7.2 Figure 5.2–5.5 for Durango, Hattiesburg, and Trinity
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Figure 5.S8: Fig. 5.2 for Durango.
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Figure 5.S9: Fig. 5.3 for Durango.
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Figure 5.S10: Fig. 5.4 for Durango.
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Figure 5.S11: Fig. 5.5 for Durango.
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Figure 5.S12: Fig. 5.2 for Hattiesburg.
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Figure 5.S13: Fig. 5.3 for Hattiesburg.
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Figure 5.S14: Fig. 5.4 for Hattiesburg.
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Figure 5.S15: Fig. 5.5 for Hattiesburg.



148

60 65 70 75 80 85 90

600

800

1000

1200

1400

1600
(a)

60 65 70 75 80 85 90

600

800

1000

1200

1400

1600

LA
:B

A 
(m

2
m

2 ) (c)

60 65 70 75 80 85 90
Vcmax ( mol m 2 s 1)

600

800

1000

1200

1400

1600
(e)

0.2X 0.6X 1.0X 1.5X 2.0X
15.0

17.5

20.0

22.5

25.0

27.5

30.0
(b)

Weibull B

0.2X 0.6X 1.0X 1.5X 2.0X
15.0

17.5

20.0

22.5

25.0

27.5

30.0

GC
P 

(×
10

3
m

ol
CO

2
m

2 )

(d)
Weibull C

0.2X 0.6X 1.0X 1.5X 2.0X
15.0

17.5

20.0

22.5

25.0

27.5

30.0
(f)

kroot, kstem, and ksla

GCP Ci/Ca

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

C i
/C

a
0.5

0.6

0.7

0.8

0.9

1.0

Figure 5.S16: Fig. 5.2 for Trinity.
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Figure 5.S17: Fig. 5.3 for Trinity.
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Figure 5.S18: Fig. 5.4 for Trinity.
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Figure 5.S19: Fig. 5.5 for Trinity.


